\(x=\dfrac{a}{m};y=\dfrac{b}{m}\left(a,b,m\in Z,m>0\right)\) và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

Theo đề bài ta có x = , y = ( a, b, m ∈ Z, m > 0)

Vì x < y nên ta suy ra a< b

Ta có : x = , y = ; z =

Vì a < b => a + a < a +b => 2a < a + b

Do 2a< a +b nên x < z (1)

Vì a < b => a + b < b + b => a + b < 2b

Do a+b < 2b nên z < y (2)

Từ (1) và (2) ta suy ra x < z< y

8 tháng 4 2017

Hãy chứng tỏ rằngGiả sử x = ; y = ( a, b, m Z, b # 0) và x < y. Hãy chứng tỏ rằng nếu chọn z =∈ thì ta có x < z < yLời giải:Theo đề bài ta có x = , y = ( a, b, m Z, m > 0)∈Vì x < y nên ta suy ra a< bTa có : x = , y = ; z = Vì a < b => a + a < a +b => 2a < a + b

1 tháng 8 2018

Có x=a/m; y=b/m và x<y nên a/m<b/m ⇒a<b

Giả sử z>x là đúng thì\(\dfrac{a+b}{2m}>\dfrac{a}{m}\Leftrightarrow\dfrac{a+b}{2m}-\dfrac{a}{m}>0\\ \Leftrightarrow\dfrac{a+b-2a}{2m}>0\Leftrightarrow\dfrac{b-a}{2m}>0\\ m\text{à}b>a;m>0n\text{ê}nz>xl\text{à}\text{đ}\text{úng (1)}\)Giả sử z<y là đúng thì

\(\dfrac{a+b}{2m}< \dfrac{b}{m}\Leftrightarrow\dfrac{a+b}{2m}-\dfrac{b}{m}< 0\\ \Leftrightarrow\dfrac{a+b-2b}{2m}< 0\Leftrightarrow\dfrac{a-b}{2m}< 0\\ m\text{à}a< b;m>0n\text{ê}nz< yl\text{à}\text{đ}\text{úng (2)}\)

Từ (1)và(2) suy ra đpcm

24 tháng 6 2017

Ta có: \(x< y\Leftrightarrow\dfrac{a}{m}< \dfrac{b}{m}\Leftrightarrow a< b\)(1)

Từ (1), Suy ra:

\(a< b\Leftrightarrow a+a< b+a\Leftrightarrow2a< a+b\left(2\right)\)

\(a< b\Leftrightarrow a+b< b+b\Leftrightarrow a+b< 2b\left(3\right)\)

Từ (2);(3), ta có:

\(2a< a+b< 2b\Leftrightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}< \dfrac{2b}{2m}\)

\(\Leftrightarrow x< z< y\left(đpcm\right)\)

25 tháng 6 2017

Lạc đề rồi kìa ucche

14 tháng 7 2016

\(x< y\)

\(\Rightarrow\frac{a}{m}< \frac{b}{m};m>0\)

\(\Rightarrow a< b\)

\(\Rightarrow\frac{a+a}{m}< \frac{a+b}{m}\)

\(\Rightarrow\frac{a+a}{2m}< \frac{a+b}{2m}\)

\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\)

\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\)

\(\Rightarrow x< z\left(1\right)\)

Tương tự lại có :

\(\frac{a+b}{m}< \frac{b+b}{m}\)

\(\Rightarrow\frac{a+b}{2m}< \frac{b+b}{2m}\)

\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\)

\(\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\)

\(\Rightarrow z< y\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow x< z< y\)

Vậy \(x< z< y.\)

28 tháng 8 2017

nếu \(x=\dfrac{2}{2}\)\(y=\dfrac{3}{2}\)

\(m=\dfrac{2+3}{2x2}\)\(=\dfrac{5}{4}\)

\(x=\dfrac{2}{2}\)\(=\dfrac{2x2}{2x2}\)\(=\dfrac{4}{4}\) ; \(y=\dfrac{3}{2}\)\(=\dfrac{3x2}{2x2}\)\(=\dfrac{6}{4}\)

vậy \(\dfrac{4}{4}\)\(< \dfrac{5}{4}\)\(< \dfrac{6}{4}\)

28 tháng 8 2017

Đây nhé!!!

Chương I  : Số hữu tỉ. Số thực

2 tháng 9 2016

Do x < y

=> a/m < b/m

=> a/m + a/m < a/m + b/m < b/m + b/m

=> 2a/m < a+b/m < 2b/m

=> a/m < a+b/m : 2 < b/m

=> a/m < a+b/m × 1/2 < b/m

=> a/m < a+b/2m < b/m

=> x < z < y

2 tháng 9 2016

=> am<bm

=>am+am<am+bm =>a.2m<m.(a+b)

=>a/m<a+b/2m         (1)

=>am+bm<bm+bm=>m(a+b)<b.2m

=>a+b/2m<b/m      (2)

tu (1) va (2)

=>a/m<a+b/m2<b/m

23 tháng 8 2017

Ta có: \(x< y\Rightarrow\dfrac{a}{m}< \dfrac{b}{m}\Rightarrow a< b\left(m>0\right)\)

\(z=\dfrac{a+b}{2m}>\dfrac{a+a}{2m}=\dfrac{2a}{2m}=\dfrac{a}{m}=x\)

\(z=\dfrac{a+b}{2m}< \dfrac{b+b}{2m}=\dfrac{2b}{2m}=\dfrac{b}{m}=y\)

\(\Rightarrow x< z< y\)

ta có: x < y hay a/m < b/m => a < b

so sánh x,y,z ta chuyển chúng cùng mẫu: 2m

x = a/m = 2a / 2m và y = b/m = 2b / 2m và Z = (a + b) / 2m

* Mà a < b :

=> a + a < b + a

hay 2a < b + a

=> x < Z (1)

* mà a < b:

=> a + b < b + b

hay a + b < 2b

=> Z < y (2)

từ (1) và (2) => nếu chọn Z = (a + b) / 2m thì ta có x < Z < y

26 tháng 8 2019

Câu hỏi của Trần Khởi My - Toán lớp 7 - Học toán với OnlineMath

Tham khảo nhé

26 tháng 8 2019

biết đường mà cảm ơn đi, hahaha:

theo đề bài x và y đã cho suy ra: a=x.m và b=y.m. Nên ta thay vào z sẽ có a+b/2m = x.m+y.m=2m

x=a/m suy ra x cũng bằng 2a/2m nên bằng 2xm/2m...Mà x.m+y.m (dòng trên) lớn hơn 2xm do y>x nên ta được z>x

Tương tự với y

Vậy x < z < y (đpcm) haha ♥