Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)
\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)
2/
Ta có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)
\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)
\(\Rightarrow P_{min}=18\)
Đặt \(A=\left(\frac{a}{a^2b^2+a^2+1}\right)^2+\left(\frac{b}{b^2c^2+b^2+1}\right)^2+\left(\frac{c}{c^2a^2+c^2+1}\right)^2\)
Cần cm : \(B=\frac{1}{a^2b^2+a^2+1}+\frac{1}{b^2c^2+b^2+1}+\frac{1}{a^2c^2+c^2+1}=1\)
\(B=\frac{a^2b^2c^2}{a^2b^2+a^2+a^2b^2c^2}+\frac{1}{b^2c^2+b^2+1}+\frac{a^2b^2c^2}{a^2c^2+a^2b^2c^3+a^2b^2c^2}\) (Do \(abc=1\))
\(=\frac{b^2c^2}{b^2c^2+b^2+1}+\frac{1}{b^2c^2+b^2+1}+\frac{b^2}{b^2c^2+b^2+1}=\frac{b^2c^2+b^2+1}{b^2c^2+b^2+1}=1\)(đúng)
Ta có : \(A=\frac{\frac{1}{\left(a^2b^2+a^2+1\right)^2}}{a^2}+\frac{\frac{1}{\left(b^2c^2+b^2+1\right)^2}}{b^2}+\frac{\frac{1}{\left(c^2a^2+c^2+1\right)^2}}{c^2}\)
\(\ge\frac{\left(\frac{1}{a^2b^2+a^2+1}+\frac{1}{b^2c^2+b^2+1}+\frac{1}{a^2c^2+c^2+1}\right)^2}{a^2+b^2+c^2}=\frac{B^2}{a^2+b^2+c^2}=\frac{1}{a^2+b^2+c^2}\)(đpcm)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
phân thức thức thứ 3 dòng thứ 3 ở mẫu là \(a^2c^2+a^2b^2c^4+a^2b^2c^2\)chứ bạn nhỉ????
Ta có:
\(3\left(a^2+b^2+c^2\right)-3\left(a^2b+b^2c+c^2a\right)\)
= \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^2b+b^2c+c^2a\right)\)\(=a^3+ab^2+ac^2+a^2b+b^3+bc^2+ca^2+b^2c+c^3\)\(-3\left(a^2b+b^2c+c^2a\right)\)
\(=a^3+b^3+c^3+ab^2+bc^2+ca^2-2a^2b-2b^2c-2c^2a\)
\(=\left(a^3-2a^2b+ab^2\right)+\left(b^3-2b^2c+bc^2\right)+\left(c^3-2c^2a+ca^2\right)\)
\(=a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\)
Mà \(a,b,c>0\)
\(\Rightarrow a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\ge0\)
\(\Rightarrow\)\(3\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
Lại có:
\(\left(a^2+b^2+c^2\right)^2+3\left(a^2+b^2+c^2\right)\ge6\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b+b^2c+c^2a\right)\)<đpcm>
bài trên mk làm sai rồi, mong mọi người thông cảm và nghĩ cách khác nha