Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a^2+b^2+c^2\right)⋮4\)
\(\Rightarrow\left(a^2+b^2+c^2\right)⋮2^2\)
\(\Rightarrow\left(a^2+b^2+c^2\right)⋮2\)
\(\Rightarrow\hept{\begin{cases}a^2⋮2\\b^2⋮2\\c^2⋮2\end{cases}\Rightarrow}\hept{\begin{cases}a⋮2\\b⋮2\\c⋮2\end{cases}}\)
Vậy a,b,c đồng thời chia hết cho 2
* Note: Bạn Greninja làm sai rồi, \(a^2+b^2+c^2⋮2\)chưa thể khẳng định \(a^2,b^2,c^2⋮2\)vì trong ba số a,b,c có thể tồn tại 1 số chẵn, 2 số lẻ. Phản ví dụ sau [a,b,c] = [1,2,3]. a,c lẻ mà \(a^2+b^2+c^2⋮2\)đấy thôi. Sau đây là lời giải của mình, bạn tham khảo:
Ta dễ có số chính phương chia 4 chỉ có thể dư 0 hoặc 1 (Cái này cơ bản, có nhiều trên mạng, hay các loại sách nâng cao)
Xét các trường hợp số dư: 0 + 0 + 1, 0 + 1 + 1, 1 + 0 + 1,... chỉ có trường hợp số dư 0 + 0 + 0 thỏa mãn, như vậy \(a^2,b^2,c^2⋮4\Rightarrow a,b,c⋮2\)(đpcm)
b: 9^2n có chữ số tận cùng là 1
=>9^2n+14 có chữ số tận cùng là 5
=>9^2n+14 chia hết cho 5
c: n(n^2+1)(n^2+4)
=n(n-2)(n-1)(n+1)(n+2)+10n^3
Vì n;n-2;n-1;n+1;n+2 là 5 số liên tiếp
nên n(n-2)(n-1)(n+1)(n+2) chia hết cho 5
=>n(n^2+1)(n^2+4) chia hết cho 5
Ta thấy : \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right).\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Ta có :\(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)là tích 5 số tự nhiên liên tiếp :
\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(5\)và cũng \(⋮\)\(6\)( cũng là 3 số tự nhiên liên tiếp )
\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(30\)\(\left(1\right)\)
Ta lại có : \(5\)\(⋮\)\(5\)và \(\left(a-1\right)a\left(a+1\right)\)\(⋮\)\(6\)
\(\Rightarrow5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(30\)\(\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(30\)
Hay \(a^5-a\)\(⋮\)\(30\)
Tương tự \(b^5-b\)và \(c^5-c\)cũng chia hết cho 30
\(\Rightarrow a^5+b^5+c^5-\left(a+b+c\right)\)\(⋮\)\(30\)
Mà \(a+b+c\)\(⋮\)\(30\)
\(\Rightarrow a^5+b^5+c^5\)\(⋮\)\(30\)\(\left(đpcm\right)\)
do tổng \(a^2+b^2+c^2\)là một số chẵn nên
hoặc cả 3 số là số chẵn
hoặc trong đó có 1 số chẵn và 2 số lẻ
TH1: cả 3 số là số chẵn nên hiển nhiên ta có \(a,b,c\)phải chia hết cho 2
TH2: trong đó có 1 số chẵn và 2 số lẻ
không mất tổng quát ta giả sử \(a=2n+1;b=2m+1,c=2k\) với m,n ,k là các số nguyên
khi đó \(a^2+b^2+c^2=4\left(m^2+n^2+k^2\right)+4\left(m+n\right)+2\)không thể chia hết cho 4
vì vậy TH3 không tồn tại hay ta có đpcm