Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-5x+6=\left(x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)
1, <=>x^2-x-2 = x^2-4
<=>x^2-4-x^2+x+2 = 0
<=> x-2 = 0
<=> x=2
2, <=> (x-2).(x-3)=0
<=> x-2 = 0 hoặc x-3 = 0
<=> x=2 hoặc x=3
\(a, 2x^2 + 5x + 10 = x^2 + 5x - 11\)
\(<=> x^2 + 21 = 0 \)
\(Do x^2 + 21 > 0\)
=> Pt vô nghiệm
\(b, 2x^2 - 6x + 7 = 0\)
\(<=> 2(x^2 - 3x+7/2)=0\)
\(<=> (x-3/2)^2 +7/4 = 0 \)
Tương tự như trên thì pt vô nghiệm
\(c, |x^2 + 3x+20| + |x-3| = 0\)
Ta có : \(|x^2 + 3x+20| = |(x+3/2)^2 + 17,75| > 0\)
\(=> |x^2 + 3x+20| + |x-3| > 0\)
=> Pt vô nghiệm
a, \(x^4-6x^3+11x^2-6x+1=0\)
\(\Rightarrow\left(x^2-3x+1\right)^2=0\)
\(\Rightarrow x^2-3x+1=0\)
\(\Rightarrow x=\frac{\pm\sqrt{5}+3}{2}\)
Chúc bạn học tốt
\(x^4-\left(6x^2-2x^2\right)+\left(9x^2-6x+1\right)=0\)
\(x^4-2x^2\left(3x-1\right)+\left(3x-1\right)^2=0\)
\(\left(x^2-3x+1\right)^2=0\)
tự làm
B) \(\left(6x^4-18x^3\right)+\left(13x^{^3}-39x^2\right)+\left(x-3x\right)-\left(2x-6\right)=0\)
\(6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(6x^3+13x^2-2\right)=0\)
\(\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)\)
\(\left(x-3\right)\left\{6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right\}\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-3x+2x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(3x\left(2x-1\right)+\left(2x-1\right)\right)\)
\(\left(x-3\right)\left(x+2\right)\left(2x-1\right)\left(3x+1\right)=0\)
câu C nghĩ đã
chẳng ai giải, thôi mình giải vậy!
a) Đặt \(y=x^2+4x+8\),phương trình có dạng:
\(t^2+3x\cdot t+2x^2=0\)
\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)
\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}
b) nhân 2 vế của phương trình với 12 ta được:
\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)
Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)
giải tiếp ra ta sẽ được S={-2/3;-5/3}
c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)
S={3;5}
d)s={1}
e) S={1;-2;-1/2}
f) phương trình vô nghiệm
Tớ học ngu nên chỉ biết cách nhân ra rồi rút gọn chứ không biết cách nào ngắn hơn :)) Hơi dài dòng nên phân tích từng vế 1 nhé :D
2/ \(\left(2x^2+5x-204\right)^2+4\left(x^2-5x-206\right)=4\left(2x^2+5x-204\right)\left(x^2-5x-206\right)\)
*****\(VT=\left(2x^2+5x-204\right)^2+4\left(x^2-5x-206\right)^2\)
\(=4x^4+25x^2+41616+20x^3-816x^2-2040x+4\left(x^4-387x^2+42436-10x^3+2060x\right)\)
\(=4x^2+25x^2+41616+20x^3-816x^2-2040x+4x^2-1548x^2+169744-40x^3+8240x\)
\(=8x^4-1523x^2+6200x+211360\)
*****\(VP=\left(8x^2+20x-816\right)\left(x^2-5x-206\right)\)
\(=8x^4-40x^3-1648x^2-100x^2-4120x-816x^2+4080x+168096\)
\(=8x^4-1748x^2-40x+168096\)
\(\Rightarrow8x^4-1523x^2+6200x+211360=8x^4-1748x^2-40x+168096\)
\(\Leftrightarrow-1523x^2+6200x+211360+1748x^2-40x+168096=0\)
\(\Leftrightarrow255x^2+43264+6240x=0\)
\(\Leftrightarrow\left(15x+208\right)^2=0\)
\(\Leftrightarrow15x+208=0\)
\(\Leftrightarrow x=-\frac{208}{15}\)
+ Ta có: \(x^4-5x^3+6x^2+5x+1=0\)
\(\Rightarrow x^2-5x+6+\frac{5}{x}+\frac{1}{x^2}=0\)( chia cả hai vế cho \(x^2\))
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-\left(5x-\frac{5}{x}\right)+6=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-5.\left(x-\frac{1}{x}\right)+6=0\)( *** )
- Đặt \(x-\frac{1}{x}=a\)\(\Rightarrow\)\(x^2+\frac{1}{x^2}=a^2+2\)
- Thay \(a=x-\frac{1}{x};\)\(a^2+2=x^2+\frac{1}{x^2}\)vào ( *** )
- Ta có: \(a^2+2-5a+6=0\)
\(\Leftrightarrow a^2-5a+8=0\)
\(\Leftrightarrow4a^2-20a+32=0\)
\(\Leftrightarrow\left(4a^2-20a+25\right)+7=0\)
\(\Leftrightarrow\left(2a-5\right)^2+7=0\)
- Ta lại có: \(\hept{\begin{cases}\left(2a-5\right)^2\ge0\forall a\\7>0\end{cases}}\Rightarrow \left(2a-5\right)^2+7\ge7>0\)mà \(\left(2a-5\right)^2+7=0\)
\(\Rightarrow\left(2a-5\right)^2+7\)( vô nghiệm ) \(\Rightarrow\)\(x^4-5x^3+6x^2+5x+1=0\)( vô nghiệm )
Vậy \(S=\left\{\varnothing\right\}\)
+ Ta có: \(\left(2x^2+5x-204\right)^2+4.\left(x^2-5x-206\right)=4.\left(2x^2+5x-204\right).\left(x^2-5x-206\right)\)( ** )
- Đặt \(a=2x^2+5x-204;\)\(b=x^2-5x-206\)\(\Rightarrow\)\(a.b=\left(2x^2+5x-204\right).\left(x^2-5x-206\right)\)
- Thay \(a=2x^2+5x-204;\)\(b=x^2-5x-206\)\(\Rightarrow\)\(a.b=\left(2x^2+5x-204\right).\left(x^2-5x-206\right)\)
vào ( ** )
- Ta có: \(a^2+4b^2=4ab\)
\(\Leftrightarrow a^2-4ab+4b^2=0\)
\(\Leftrightarrow\left(a-2b\right)^2=0\)
\(\Leftrightarrow a-2b=0\)
\(\Leftrightarrow a=2b\)( * )
- Thay \(a=2x^2+5x-204;\)\(b=x^2-5x-206\)vào ( * )
- Ta lại có: \(2x^2+5x-204=2.\left(x^2-5x-206\right)\)
\(\Leftrightarrow2x^2+5x-204=2x^2-10x-412\)
\(\Leftrightarrow\left(2x^2-2x^2\right)+\left(5x+10x\right)=-\left(412-204\right)\)
\(\Leftrightarrow15x=-208\)
\(\Leftrightarrow x=-\frac{208}{15} \left(TM\right)\)
Vậy \(S=\left\{-\frac{208}{15}\right\}\)
Bài 2:
\(2x^3+6x^2=x^2+3x\)
\(\Rightarrow2x^3+6x^2-x^2-3x=0\)
\(\Rightarrow2x^3+5x^2-3x=0\)
\(\Rightarrow x\left(2x^2+5x-3\right)=0\)
\(\Rightarrow x\left(2x^2-x+6x-3\right)=0\)
\(\Rightarrow x\left[x\left(2x-1\right)+3\left(2x-1\right)\right]=0\)
\(\Rightarrow x\left(x+3\right)\left(2x-1\right)=0\)
=>x=0 hoặc x=-3 hoặc x=1/2
1)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
Tới đây b cho từng cái = 0 rồi giải ra tìm x nha :)
a, Xét x=0 không phải nghiệm pt chia 2 vế cho x2 , đặt t= x+1/x từ đó suy ra phương trình ẩn t, giải ra ta được các phương trình ẩn x rồi ra x.
b, Tách đa thức thành tích của đơn thức (x+1) và 1 đa thức bậc 4 rồi làm như câu a,.
\(2x^4+3x^3-x^2+3x+2=0\)
\(\Leftrightarrow2x^4+4x^3-x^3-2x^2+x^2+2x+x+2=0\)
\(\Leftrightarrow2x^3.\left(x+2\right)-x^2.\left(x+2\right)+x.\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(2x^3-x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(2x^3+x^2-2x^2-x+2x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(2x+1\right).\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}}\)
\(\text{Vì }x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy phương trình có nghiệm \(S=\left\{-2,-\frac{1}{2}\right\}\)
\(6x^4-5x^3-38x^2-5x+6=0\)
\(\Leftrightarrow6x^4-12x^3+17x^3-34^2-4x^2+8x-3x+6=0\)
\(\Leftrightarrow6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x^3+18x^2-4x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x^3+18x^2-x^2-3x-x-3=0\right)\)
\(\Leftrightarrow\left(x-2\right)\left[6x^2\left(x+3\right)-x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(6x^2-x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(6x^2-3x+2x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left[6x\left(x-\frac{1}{2}\right)+2\left(x-\frac{1}{2}\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-\frac{1}{2}\right)\left(6x+2\right)=0\)
2x4 - 5x3 + 6x2 - 5x + 2 = 0
<=> 2x4 - 2x3 - 3x3 + 3x2 + 3x2 - 3x - 2x + 2 = 0
<=> 2x3( x - 1 ) - 3x2( x - 1 ) + 3x( x - 1 ) - 2( x - 1 ) = 0
<=> ( x - 1 )( 2x3 - 3x2 + 3x - 2 ) = 0
<=> ( x - 1 )( 2x3 - 2x2 - x2 + x + 2x - 2 ) = 0
<=> ( x - 1 )[ 2x2( x - 1 ) - x( x - 1 ) + 2( x - 1 ) ]
<=> ( x - 1 )2( 2x2 - x + 2 ) = 0
<=> x - 1 = 0 [ do 2x2 - x + 2 = 2( x2 - 1/2x + 1/16 ) + 15/8 = 2( x - 1/4 )2 + 15/8 ≥ 15/8 ∀ x ]
<=> x = 1
Vậy S = { 1 }
Với \(x=0\)không thỏa mãn.
Với \(x\ne0\): Chia 2 vế của phương trình cho \(x^2\)ta được:
\(2x^2-5x+6-\frac{5}{x}+\frac{2}{x^2}=0\)
\(\Leftrightarrow2\left(x^2+\frac{1}{x^2}\right)-5\left(x+\frac{1}{x}\right)+6=0\)
\(\Leftrightarrow2\left[\left(x+\frac{1}{x}\right)^2-2\right]-5\left(x+\frac{1}{x}\right)+6=0\)
\(\Leftrightarrow2t^2-5t+2=0\)(với \(t=x+\frac{1}{x}\))
\(\Leftrightarrow\left(2t-1\right)\left(t-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=2\\t=\frac{1}{2}\end{cases}}\)
+) Với \(t=2\Rightarrow x+\frac{1}{x}=2\Leftrightarrow x^2-2x+1=0\Leftrightarrow x=1\)(thỏa).
+) Với \(t=\frac{1}{2}\Rightarrow x+\frac{1}{x}=\frac{1}{2}\Leftrightarrow x^2-\frac{1}{2}x+1=0\)(phương trình này vô nghiệm).
Vậy phương trình có nghiệm duy nhất \(x=1\).