K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 5 2020

3.

\(f\left(x+\frac{\pi}{3}\right)=cos\left(x+\frac{\pi}{3}\right)\Rightarrow f'\left(x+\frac{\pi}{3}\right)=-sin\left(x+\frac{\pi}{3}\right)\)

\(f'\left(x-\frac{\pi}{6}\right)=-sin\left(x-\frac{\pi}{6}\right)\)

\(f'\left(0\right)=-sin\left(0\right)=0\)

\(2f'\left(x+\frac{\pi}{3}\right).f'\left(x-\frac{\pi}{6}\right)=2sin\left(x+\frac{\pi}{3}\right)sin\left(x-\frac{\pi}{6}\right)\)

\(=cos\left(\frac{\pi}{2}\right)-cos\left(2x+\frac{\pi}{6}\right)=-cos\left(2x+\frac{\pi}{6}\right)\)

\(f'\left(0\right)-f\left(2x+\frac{\pi}{6}\right)=0-cos\left(2x+\frac{\pi}{6}\right)=-cos\left(2x+\frac{\pi}{6}\right)\)

\(\Rightarrow2f'\left(x+\frac{\pi}{3}\right)f'\left(x-\frac{\pi}{6}\right)=f'\left(0\right)-f\left(2x+\frac{\pi}{6}\right)\) (đpcm)

4.

\(y=3\left(sin^4x+cos^4x\right)-2\left(sin^6x+cos^6x\right)\)

\(=3\left(sin^2x+cos^2x\right)^2-6sin^2x.cos^2x-2\left(sin^2x+cos^2x\right)^3+6sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(=3-2=1\)

\(\Rightarrow y'=0\) ; \(\forall x\)

5.

\(y=\left(\frac{sinx}{1+cosx}\right)^3=\left(\frac{sinx\left(1-cosx\right)}{1-cos^2x}\right)^3=\left(\frac{sinx\left(1-cosx\right)}{sin^2x}\right)^3=\left(\frac{1-cosx}{sinx}\right)^3\)

\(y'=3\left(\frac{1-cosx}{sinx}\right)^2\left(\frac{sin^2x-cosx\left(1-cosx\right)}{sin^2x}\right)=3\left(\frac{1-cosx}{sinx}\right)^2\left(\frac{1-cosx}{sin^2x}\right)=\frac{3\left(1-cosx\right)^3}{sin^4x}\)

\(\Rightarrow y'.sinx-3y=\frac{3\left(1-cosx\right)^3}{sin^3x}-3\left(\frac{1-cosx}{sinx}\right)^3=0\) (đpcm)

NV
20 tháng 5 2020

a/ \(f'\left(x\right)=2sinx.cosx-2sinx=0\)

\(\Leftrightarrow2sinx\left(cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=1\end{matrix}\right.\) \(\Rightarrow x=k\pi\)

b/ \(f'\left(x\right)=cosx+sin4x+sin6x=0\)

\(\Leftrightarrow cosx+2sin5x.cosx=0\)

\(\Leftrightarrow cosx\left(2sin5x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\sin5x=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\5x=-\frac{\pi}{6}+k2\pi\\5x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=-\frac{\pi}{30}+\frac{k2\pi}{5}\\x=-\frac{7\pi}{30}+\frac{k2\pi}{5}\end{matrix}\right.\)

20 tháng 5 2020

Mình cảm ơn bạn, bạn có thể giúp mình làm thêm một số bài nữa được không ạ?

NV
8 tháng 8 2020

d.

\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=0\)

\(\Leftrightarrow sin^2x-cos^2x=0\)

\(\Leftrightarrow-cos2x=0\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

e. Đề thiếu

f.

\(\Leftrightarrow sin2x=\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\left(cos^2\frac{x}{2}+sin^2\frac{x}{2}\right)\)

\(\Leftrightarrow sin2x=cos^2\frac{x}{2}-sin^2\frac{x}{2}\)

\(\Leftrightarrow sin2x=cosx\)

\(\Leftrightarrow sin2x=sin\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
8 tháng 8 2020

a.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)

b.

\(\Leftrightarrow sin2x=1\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

c.

\(\Leftrightarrow2sin2x.cos2x=-1\)

\(\Leftrightarrow sin4x=-1\)

\(\Leftrightarrow4x=-\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)

a: \(\Leftrightarrow cos2x=\dfrac{1}{\sqrt{2}}\)

=>2x=pi/4+k2pi hoặc 2x=-pi/4+k2pi

=>x=pi/8+kpi hoặc x=-pi/8+kpi

b: \(\Leftrightarrow sinx=sin\left(\dfrac{pi}{2}-3x\right)\)

=>x=pi/2-3x+k2pi hoặ x=pi/2+3x+k2pi

=>4x=pi/2+k2pi hoặc -2x=pi/2+k2pi

=>x=pi/8+kpi/2 hoặc x=-pi/4-kpi

d: \(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=-sin\left(3x+\dfrac{pi}{4}\right)\)

\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=sin\left(-3x-\dfrac{pi}{4}\right)\)

\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=cos\left(3x+\dfrac{3}{4}pi\right)\)

=>3x+3/4pi=x+pi/3+k2pi hoặc 3x+3/4pi=-x-pi/3+k2pi

=>2x=-5/12pi+k2pi hoặc 4x=-13/12pi+k2pi

=>x=-5/24pi+kpi hoặc x=-13/48pi+kpi/2

e: \(\Leftrightarrow sinx-\sqrt{3}\cdot cosx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=0\)

=>x-pi/3=kpi

=>x=kpi+pi/3

TL
1 tháng 12 2019

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

Từ đó suy ra f'(x)=0

a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0

d,f(x)=\(\frac{3}{2}\)=>f'(x)=0

AH
Akai Haruma
Giáo viên
6 tháng 7 2019

a)

\(4\sin (3x+\frac{\pi}{3})-2=0\Leftrightarrow \sin (3x+\frac{\pi}{3})=\frac{1}{2}=\sin (\frac{\pi}{6})\)

\(\Rightarrow \left[\begin{matrix} 3x+\frac{\pi}{3}=\frac{\pi}{6}+2k\pi \\ 3x+\frac{\pi}{3}=\pi-\frac{\pi}{6}+2k\pi\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=\frac{-\pi}{18}+\frac{2\pi}{3}\\ x=\frac{\pi}{6}+\frac{2\pi}{3}\end{matrix}\right.\) (k nguyên)

c)

\(\sin (x+\frac{x}{4})-1=0\Leftrightarrow \sin (\frac{5}{4}x)=1=\sin (\frac{\pi}{2})\)

\(\Rightarrow \frac{5}{4}x=\frac{\pi}{2}+2k\pi\Rightarrow x=\frac{2}{5}\pi+\frac{8}{5}k\pi \) (k nguyên)

d)

\(2\sin (2x+70^0)+1=0\Leftrightarrow \sin (2x+\frac{7}{18}\pi)=-\frac{1}{2}=\sin (\frac{-\pi}{6})\)

\(\Rightarrow \left[\begin{matrix} 2x+\frac{7}{18}\pi=\frac{-\pi}{6}+2k\pi\\ 2x+\frac{7}{18}\pi=\frac{7}{6}\pi+2k\pi\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=\frac{-5\pi}{18}+k\pi\\ x=\frac{7}{18}\pi+k\pi\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2019

f)

\(\cos 2x-\cos 4x=0\)

\(\Leftrightarrow \cos 2x=\cos 4x\Rightarrow \left[\begin{matrix} 4x=2x+2k\pi\\ 4x=-2x+2k\pi\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=k\pi\\ x=\frac{k}{3}\pi \end{matrix}\right.\) ( k nguyên)

b,e,g bạn xem lại đề, đơn vị không thống nhất.

NV
30 tháng 4 2019

\(y'=\frac{2x-4}{2\sqrt{x^2-4x}}=0\Rightarrow x=2\)

19 tháng 9 2016

a, ta có 2x + π/3 = 3π/4 +k2π hoặc 2x + π/3 = -3π/4 + k2π

=> x= 5π/24 + kπ hoặc x= -13π/24 +kπ

b, đề sai phải ko

c,  cos22x - sin22x - 2sinx -1=0

<=> -2sin22x -2sin2x =0

<=> sin2x=0 hoặc sin2x=-1

<=> x=kπ hoặc x= π/2 + kπ ; x=-π/4 +kπ hoặc x=5π/8 + kπ

d, cos5xcosπ/4 - sin5xsinπ/4 = -1/2

   cos( 5x + π/4 ) = -1/2

   <=> x=π/12 +k2π/5 hoặc x= -11π/60 + k2π/5

f,4x+π/3=3π/10 -x +k2π  hoặc 4x+π/3 = x - 3π/10 +k2π

<=> x =-π/150 + k2π/5 hoặc x = π/90 +k2π/3