Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
\(a,\left\{{}\begin{matrix}AB=AC\\AD=AE\\\widehat{BAC}\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\\ b,\Delta ABE=\Delta ACD\\ \Rightarrow\widehat{AEB}=\widehat{ADC}\\ \Rightarrow180^0-\widehat{AEB}=180^0-\widehat{ADC}\\ \Rightarrow\widehat{BDC}=\widehat{CEB}\)
Câu 4:
Số quả dưa là:
\(15:\dfrac{3}{11}=15\cdot\dfrac{11}{3}=55\)(quả)
(x - 2) . (x + 2/3) > 0
suy ra:x - 2. x và 2/3 cùng dấu
ta có 2 trường hợp:
-trường hợp 1: x - 2 > 0
x + 2/3 > 0
suy ra: x > 2
x > 2/3
suy ra: x > 2
-trường hợp 2: x - 2 < 0
x + 2/3 < 0
suy ra: x < 2
x < 2/3
suy ra: x < 2/3
vậy: x > 2 hoặc x < 2/3
ủng hộ mk nha mấy pạn
cảm ơn trước
Bài 5:
f(x) có 1 nghiệm x - 2
=> f (2) = 0
\(\Rightarrow a.2^2-a.2+2=0\)
\(\Rightarrow4a-2a+2=0\)
=> 2a + 2 = 0
=> 2a = -2
=> a = -1
Vậy:....
P/s: Mỗi lần chỉ đc đăng 1 câu hỏi thôi! Bạn vui lòng đăng bài hình trên câu hỏi khác nhé!
a)Ta có △MIP cân tại M nên ˆMNI=ˆMPIMNI^=MPI^
Xét △MIN và △MIP có:
ˆNMI=ˆPMINMI^=PMI^
MI : cạnh chung
ˆMNI=ˆMPIMNI^=MPI^
Nên △MIN = △MIP (c.g.c)
b)Gọi O là giao điểm của EF và MI
Vì △MNP là tam giác cân và MI là đường phân giác của △MIP
Suy ra MI đồng thời là đường cao của △MNP
Nên ˆMOE=ˆMOF=90oMOE^=MOF^=90o
Xét △MOE vuông tại O và △MOF vuông tại O có:
OM : cạnh chung
ˆEMO=ˆFMOEMO^=FMO^(vì MI là đường phân giác của △MIP và O∈∈MI)
Suy ra △MOE = △MOF (cạnh góc vuông – góc nhọn kề)
Nên ME = MF
Vậy △MEF cân
tham khảo
TK :
- Cạnh huyền góc nhọn: Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn tương ứng của tam giác vuông kia thì 2 tam giác đó bằng nhau.
- Cạnh góc vuông-góc nhọn kề: Nếu cạnh huyền và góc nhọn kề của tam giác vuông này bằng cạnh huyền và góc nhọn kề tương ứng của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
a: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
\(\widehat{HBD}=\widehat{KCE}\)
Do đó: ΔHBD=ΔKCE
Suy ra: HB=CK
b: Xét ΔAHB và ΔAKC có
AB=AC
\(\widehat{ABH}=\widehat{ACK}\)
BH=CK
DO đó: ΔAHB=ΔAKC
Suy ra: \(\widehat{AHB}=\widehat{AKC}\)
c: Xét ΔADE có
AB/BD=AC/CE
Do đó: BC//DE
hay HK//DE
a: Xét ΔABC và ΔABD có
AB chung
AC=AD
Do đó: ΔABC=ΔABD