Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA có :
\(H=x^2+2xy+y^2-2x-2y=\left(x^2+y^2+1+2xy-2x-2y\right)-1=\left(x+y-1\right)^2-1\)
Vì \(\left(x+y-1\right)^2\ge0\) nên \(\left(x+y-1\right)^2-1\ge-1\)
Vậy GTNN của H là -1 khi x+y-1=0 => x+y = 1
BẢO HÙNG HÓM HỈNH LỚP TAO LÀM CHO CÒN TAO CHO Ý H
H=\(X^2+2XY+Y^2-2X-2Y\)
H=\(\left(X+Y\right)^2-2\left(X+Y\right)\)
H=\(\left(X+Y\right)^2\)\(-2.\left(X+Y\right).1+1\))-1
H=\(\left(X+Y-1\right)^2-1\)
VẬY GTNN LÀ -1
WTF đăng một loạt vầy ai dám làm @@
Mấy bài này trong sách bài tập cx có bài mẫu
tự lật sách ra học ik , đăng 1 loạt ai giải cho chép zô hết
a/ \(4x^2+2y^2-4xy+4x-2y+5=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y\right)^2+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y+1\right)^2+4=0\)
Với mọi x, y ta có :
\(\left(2x-y+1\right)^2\ge0\Leftrightarrow\left(2x-y+1\right)^2+4>0\)
\(\Leftrightarrow pt\) vô nghiệm
\(\frac{x^2+4y^2-4xy-4}{2x^2-4xy+4x}=\frac{\left(x^2-4xy+4y^2\right)-4}{2x.\left(x-2y+2\right)}.\)
\(=\frac{\left(x-2y\right)^2-4}{2x.\left(x-2y+2\right)}=\frac{\left(x-2y+2\right).\left(x-2y-2\right)}{2x.\left(x-2y+2\right)}\)
\(=\frac{x-2y-2}{2x}\)
chúc bn học tốt!
\(A=x^2+2x+3=\left(x+1\right)^2+2>=2\)
Dấu '=' xảy ra khi x=-1
\(B=-\left(x^2+4x-1\right)\)
\(=-\left(x^2+4x+4-5\right)\)
\(=-\left(x+2\right)^2+5< =5\)
Dấu '=' xảy ra khi x=-2
\(C=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21< =21\)
Dấu '=' xảy ra khi x=-4
\(D=-\left(x^2+x-1\right)\)
\(=-\left(x^2+x+\dfrac{1}{4}-\dfrac{5}{4}\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}< =\dfrac{5}{4}\)
Dấu '=' xảy ra khi x=-1/2
a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)
\(=\dfrac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\cdot\dfrac{\left(x-2y\right)^2}{-\left(x-2y\right)\left(x+2y\right)}:\dfrac{5x^2y-10xy^2}{x^3+6x^2y+12xy^3+8y^3}\)
\(=\dfrac{-2x\left(x-2y\right)^2}{\left(x+2y\right)^3}\cdot\dfrac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}\)
\(=\dfrac{-2x\cdot\left(x-2y\right)}{5xy}=\dfrac{-2\left(x-2y\right)}{5y}\)
a) = x^2 - 2x + 1 + 4y^2 + 4y + 1
= ( x - 1 )^2 + ( 2y + 1 )^2
b) = 4x^2 + 4x +1 + 4y^2 + 4y + 1
= ( 2x + 1 )^2 + ( 2y + 1 )^2
c) = 9x^2 - 12x + 4 + 16y^2 - 24y + 9
=( 3x - 2 )^2 + ( 4y - 3 )^2
d) = 4x^2 + 4xy+ y^2 + x^2 - 2xz + z^2
= ( 2x + y )^2 + ( x - z )^2
\(G=\frac{2}{x^2+4y^2-4xy+4x-4y+10}\)
\(=\frac{2}{\left(x-2y\right)^2+2\left(x-2y\right)+1+2x+9}\)
\(=\frac{2}{\left(x-2y+1\right)^2+2x+9}\)