K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: Ta có: AM//BC

AE⊥BC

Do đó:AM⊥AE

Suy ra: \(\widehat{AME}+\widehat{AEM}=90^0\)

hay \(\widehat{AME}+\widehat{BAD}=90^0\)

26 tháng 3 2022

làm đc nhưng muộn r nên lười làm :))

26 tháng 3 2022

mệt nữa

Bài 12: 

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

6 tháng 12 2021

Có thể lm bài 11 đc ko ạ🥺😅

a: Đặt f(x)=0

=>4x-1/2=0

hay x=1/8

b: Vì g(x) có hệ số cao nhất là 3 nên m-5=3

hay m=8

Vì g(x) có hệ số tự do là -2 nên 3-n=-2

hay n=5

25 tháng 3 2023

a) \(f\left(x\right)+g\left(x\right)-h\left(x\right)\)

\(=\left(2x^5-4^4x^4+3x^3-x^2+5x-1\right)+\left(-x^5+2x^4-3x^3-x^2-2x+7\right)-\left(x^5-2x^4-2x^2-x-3\right)\)

\(=2x^5-4x^4+3x^3-x^2+5x-1-x^5+2x^4-3x^3-x^2-2x+7-x^5+2x^4+2x^2+x+3\)\(=\left(2x^5-x^5-x^5\right)-\left(4x^4-2x^4-2x^4\right)+\left(3x^3-3x^3\right)-\left(x^2+x^2-2x^2\right)+\left(5x-2x+x\right)-\left(1-7-3\right)\)

\(=0-0+0-0+4x-9\)

\(=4x-9\)

`a,`

`f(x)+g(x)-h(x)=(2x^5-4x^4+3x^3-x^2+5x-1)+(-x^5+2x^4-3x^3-x^2-2x+7)-(x^5-2x^4-2x^2-x-3)`

`= 2x^5-4x^4+3x^3-x^2+5x-1+ -x^5+2x^4-3x^3-x^2-2x+7-x^5+2x^4+2x^2+x+3`

`= (2x^5-x^5-x^5)-(4x^4-2x^4-2x^4)+(3x^3-3x^3)-(x^2-2x^2)-(2x-x)+(-1+7+3)`

`= 0-0+0-(-x^2)-x+10 = x^2-x+9`

Xét tứ giác GHKI có 

GH//KI

GH=KI

Do đó: GHKI là hình bình hành

Suy ra: GI=HK

25 tháng 10 2023

10: Chọn B

Ot là phân giác của \(\widehat{MOP}\)

=>\(\widehat{MOP}=2\cdot\widehat{tOP}\)

\(\widehat{MOP}=\widehat{NOQ}\)

=>\(\widehat{NOQ}=2\cdot\widehat{tOP}\)

mà \(\widehat{tOP}=\widehat{t'OQ}\)(hai góc đối đỉnh)

nên \(\widehat{NOQ}=2\cdot\widehat{t'OQ}\)

=>Ot' là phân giác của góc NOQ

loading...​​

11:

OC là phân giác của góc AOB

=>\(\widehat{AOC}=\widehat{BOC}=\dfrac{50^0}{2}=25^0\)

\(\widehat{DOE}=\widehat{BOC}\left(=25^0\right)\)

=>\(\widehat{DOE}+\widehat{DOB}=180^0\)

=>OB và OE là hai tia đối nhau

=>Hai góc đối đỉnh là \(\widehat{BOC};\widehat{DOE}\)

=>Chọn D

loading...

12:

\(\widehat{AOC}+\widehat{AOD}=180^0\)

\(\widehat{AOC}-\widehat{AOD}=50^0\)

Do đó: \(\widehat{AOC}=\dfrac{180^0+50^0}{2}=115^0;\widehat{AOD}=115^0-50^0=65^0\)

=>\(\widehat{BOC}=\widehat{AOD}=65^0\)

=>Chọn B

loading...