Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, f(x)=( x - 100 )( x5 - x4 + x3 - x2 + x ) - x + 25
=>f(100) = - 75
Ta có x = 100
=> x + 1 = 101
Khi đó A = x15 - 101x14 + 101x13 - 101x12 + ... + 101x3 - 101x2 + 101x + 2020
= x15 - (x + 1)x14 + (x + 1)x13 - (x + 1)x12 + ... + (x + 1)x3 - (x + 1)x2 + (x + 1)x + 2020
= x15 - x15 - x14 + x14 + x13 - x13 - x12 + ... + x4 + x3 - x3 - x2 + x2 + x + 2020
= x + 2020
= 101 + 2020 (Vì x = 100)
= 2121
Vậy A = 2121 khi x = 100
A = x15 - 101x14 + 101x13 - ... - 101x2 + 101x + 2020 tại x = 100
x = 100 => 101 = x + 1
Thế vào A ta được
A = x15 - ( x + 1 )x14 + ( x + 1 )x13 - ... - ( x + 1 )x2 + ( x + 1 )x + 2020
= x15 - ( x15 + x14 ) + ( x14 + x13 ) - ... - ( x3 + x2 ) + ( x2 + x ) + 2020
= x15 - x15 - x14 + x14 + x13 - ... - x3 - x2 + x2 + x + 2020
= x + 2020
= 100 + 2020 = 2120
Giả sử : f( x) = ( x2 - 1).g(x) + ax + b
*) Áp dụng định lý Bezout , ta có :
f( 1) = a + b
(=) 1100 - 150 + 2.125 - 4 = a + b
(=) a + b = -2 (*)
*) Áp dụng định lý Bezout , ta có :
f( -1) = -a + b
(=) ( -1)100 - ( -1)50 + 2.(-1)25 - 4
(=) -a + b = -6 (**)
Từ ( *,**) 2b =-8 -> b = -4 -> a = 2
Vậy số dư là : 2x - 4
Ta có: \(\widehat{M} + \widehat{N} + \widehat{E} + \widehat{F} = 360^o\) (tổng các góc của tứ giác)
\(\Rightarrow\) \(\widehat{E} + \widehat{F} = 360^o - (\widehat{M} + \widehat{N})\)
\(\Rightarrow\) \(\widehat{E} + \widehat{F} = 360^o - (100^o+120^o)\)
\(\Rightarrow\) \(\widehat{E} + \widehat{F} = 140^o\)
mà \(\widehat{E} - \widehat{F} = 20^o\)
\(\Rightarrow\) \(2\widehat{F} = 120^o\)
\(\Rightarrow\) \(\widehat{F} = 60^o\)
\(\Rightarrow\) \(\widehat{E} = 20^o + \widehat{F} = 20^o + 60^o = 80^o\)
Vậy \(\widehat{E} = 80^o, \widehat{F} = 60^o\)
Ta có: (góc) M + N + E + F = 360 độ ( định lý )
hay: 100 + 120 + E +F = 360 độ
--> (góc) E +F = 140 (độ)
Mà: (góc) E -F = 20 (độ) <gt>
Nên: E = (140 + 20) :2 = 80 (độ)
F = (140 - 20 ) :2 = 60 (độ)
Vậy góc E=80 độ và góc F = 60 độ.
( Tại mk không biết sử dụng cacá kí hiệu góc và độ nên có đôi chỗ thiếu kí hiêụ. Mk nghĩ là bn hiểu đc. Chúc bn học tốt nha ! )
a) Áp dụng đinh lý Bê-du, ta có f(x) chia x + 1 dư \(f\left(-1\right)\); bạn tự thay x = - 1 và tính kết quả đó chính là số dư.
b) Dùng phương pháp gán giá trị riêng :
Đặt \(f\left(x\right)=\left(x^2-1\right).Q\left(x\right)+R\left(x\right)\)
Do đa thức chia có bậc không quá 2 nên đa thức dư có bậc không quá 1, nên đặt \(R\left(x\right)=ax+b\)
Thay vào và có :
\(x^{100}-x^{50}+2.x^{25}-4=\left(x^2-1\right)Q\left(x\right)+ax+b\)
Lần lượt gán cho x giá trị 1 và -1
\(f\left(1\right)=1-1+2.1-4=0.Q\left(x\right)+a.1+b\)
\(\Rightarrow a+b=-2\)
\(f\left(-1\right)=1-1+2.\left(-1\right)-4=0.Q\left(x\right)+a.\left(-1\right)+b\)
\(\Rightarrow b-a=-6\)
\(\Rightarrow b=\frac{\left(-2\right)+\left(-6\right)}{2}=-\frac{8}{2}=-4\)
\(a=\left(-4\right)-\left(-6\right)=2\)
Do đó dư là \(2x-4\)
Vậy ...
Câu 2:
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
Có \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)
do đó phương trình ban đầu tương đương với:
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(\Leftrightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)
\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)
\(f\left(100\right)\Leftrightarrow x=100\)
\(\Rightarrow x+1=101\left(1\right)\)
Thay (1) vào ta được
\(f\left(100\right)=x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-\left(x+1\right)x^5+...+\left(x+1\right)x^2-\left(x+1\right)x+25\)
\(f\left(100\right)=x^8-x^8-x^7+x^7+x^6-x^6-x^5+...+x^2-x^2-x+25\)
\(f\left(100\right)=-x+25\)
\(f\left(100\right)=-100+25\)
\(f\left(100\right)=-75\)