K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

\(A=49x^2-28x+25\)

\(A=\left(7x\right)^2-2.7x.2+4-4+25\)

\(A=\left(7x-2\right)^2+21\)

\(\left(7x-2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(7x-2\right)^2+21\ge21\) với mọi x

\(\Rightarrow Amin=21\Leftrightarrow7x-2=0\)

\(\Rightarrow7x=2\)

\(\Rightarrow x=\dfrac{2}{7}\)

Vậy \(Amin=21\Leftrightarrow x=\dfrac{2}{7}\)

\(B=8x^2-28x-1\)

\(B=2\left(4x^2-14x-\dfrac{1}{2}\right)\)

\(B=2\left[\left(2x\right)^2-2.2x.\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2-\left(\dfrac{7}{2}\right)^2-\dfrac{1}{2}\right]\)

\(B=2\left[\left(2x\right)^2-2.2x.\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2-\dfrac{51}{4}\right]\)

\(B=2\left(2x-\dfrac{7}{2}\right)^2-\dfrac{51}{2}\)

\(2\left(2x-\dfrac{7}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow2\left(2x-\dfrac{7}{2}\right)^2-\dfrac{51}{2}\ge-\dfrac{51}{2}\)

\(\Rightarrow Bmin=-\dfrac{51}{2}\Leftrightarrow2x-\dfrac{7}{2}=0\)

\(\Rightarrow2x=\dfrac{7}{2}\)

\(\Rightarrow x=\dfrac{7}{4}\)

Vậy \(Bmin=-\dfrac{51}{2}\Leftrightarrow x=\dfrac{7}{4}\)

\(C=\left(2x^2+5\right)^2+10\)

\(\left(2x^2+5\right)^2\ge0\) với mọi x

\(\Rightarrow\left(2x^2+5\right)^2+10\ge10\) với mọi x

\(\Rightarrow Cmin=10\Leftrightarrow2x^2+5=0\)

\(\Rightarrow2x^2=-5\)

\(\Rightarrow x^2=-\dfrac{5}{2}\)

\(\Rightarrow\) Không tồn tại x thỏa mãn

Vậy C không có giá trị nhỏ nhất

P/s: Câu c mình làm không có chắc nha, thấy nó sao sao ấy, không biết có sai đề không? bucminh

\(D=3x^2-8x+7\)

\(D=3\left(x^2-\dfrac{8}{3}x+\dfrac{7}{3}\right)\)

\(D=3\left(x^2-2.x.\dfrac{4}{3}+\dfrac{16}{9}-\dfrac{16}{9}+\dfrac{7}{3}\right)\)

\(D=3\left(x^2-2.x.\dfrac{4}{3}+\dfrac{16}{9}+\dfrac{5}{9}\right)\)

\(D=3\left(x-\dfrac{4}{3}\right)^2+\dfrac{5}{3}\)

\(3\left(x-\dfrac{4}{3}\right)^2\ge0\) với mọi x

\(\Rightarrow3\left(x-\dfrac{4}{3}\right)^2+\dfrac{5}{3}\ge\dfrac{5}{3}\)

\(\Rightarrow Dmin=\dfrac{5}{3}\Leftrightarrow x-\dfrac{4}{3}=0\)

\(\Rightarrow x=\dfrac{4}{3}\)

Vậy \(Dmin=\dfrac{5}{3}\Leftrightarrow x=\dfrac{4}{3}\)

\(E=x^4-2x^2+12\)

\(E=\left(x^2\right)^2-2x^2+1+11\)

\(E=\left(x^2-1\right)^2+11\)

\(\left(x^2-1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x^2-1\right)^2+11\ge11\) với mọi x

\(\Rightarrow Emin=11\Leftrightarrow x^2-1=0\)

\(\Rightarrow x^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy \(Emin=11\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

\(F=4x^2+15x+2\)

\(F=\left(2x\right)^2+2.2x.\dfrac{15}{4}+\left(\dfrac{15}{4}\right)^2-\left(\dfrac{15}{4}\right)^2+2\)

\(F=\left(2x+\dfrac{15}{4}\right)^2-\dfrac{225}{16}+\dfrac{32}{16}\)

\(F=\left(2x+\dfrac{15}{4}\right)^2-\dfrac{193}{16}\)

\(\left(2x+\dfrac{15}{4}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(2x+\dfrac{15}{4}\right)^2-\dfrac{193}{16}\ge-\dfrac{193}{16}\)

\(\Rightarrow Fmin=-\dfrac{193}{16}\Leftrightarrow2x+\dfrac{15}{4}=0\)

\(\Rightarrow2x=-\dfrac{15}{4}\)

\(\Rightarrow x=-\dfrac{15}{4}.\dfrac{1}{2}\)

\(\Rightarrow x=-\dfrac{15}{8}\)

Vậy \(Fmin=-\dfrac{193}{16}\Leftrightarrow x=-\dfrac{15}{8}\)

\(H=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)

\(H=\left(x^2+4x-5\right)\left(x^2+4x+5\right)\)

\(H=\left(x^2+4x\right)^2-5^2\)

\(H=\left(x^2+4x\right)^2-25\)

\(\left(x^2+4x\right)^2\ge0\)

\(\Rightarrow\left(x^2+4x\right)^2-25\ge-25\) với mọi x

\(\Rightarrow Hmin=-25\Leftrightarrow x^2+4x=0\)

\(\Rightarrow x\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Vậy \(Hmin=-25\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

\(I=\left(x^6+6\right)^2\)

\(\left(x^6+6\right)^2\ge0\)

\(\Rightarrow Imin=0\Leftrightarrow x^6+6=0\)

\(\Rightarrow\left(x^3\right)^2=-6\)

\(\Rightarrow\) Không tồn tại x

Vậy I không có giá trị nhỏ nhất

14 tháng 8 2018

\(A=49x^2-28x+25=\left(49x^2-28x+1\right)+24=\left(7x-1\right)^2+24\ge24\)

Vậy GTNN của A là 24 khi x = \(\dfrac{1}{7}\)

\(B=8x^2-28x-1=8\left(x^2-\dfrac{7}{2}x+\dfrac{49}{16}\right)-\dfrac{51}{2}=8\left(x-\dfrac{7}{4}\right)^2-\dfrac{51}{2}\ge-\dfrac{51}{2}\)

Vậy GTNN của B là \(-\dfrac{51}{2}\) khi x = \(\dfrac{7}{4}\)

\(C=\left(2x^2+5\right)^2+10=4x^4+20x^2+35\ge35\)

Vậy GTNN của C là 35 khi x = 0

\(D=3x^2-8x+7=3\left(x^2-\dfrac{8}{3}x+\dfrac{16}{9}\right)+\dfrac{5}{3}=3\left(x-\dfrac{4}{3}\right)^2+\dfrac{5}{3}\ge\dfrac{5}{3}\)

Vậy GTNN của D là \(\dfrac{5}{3}\) khi x = \(\dfrac{4}{3}\)

\(E=x^4-2x^2+12=\left(x^4-2x^2+1\right)+11=\left(x^2-1\right)^2+11\ge11\)

Vậy GTNN của E là 11 khi x = 1 hoặc x = -1

\(F=4x^2+15x+2=\left(4x^2+15x+\dfrac{225}{16}\right)-\dfrac{193}{16}=\left(2x+\dfrac{15}{4}\right)^2-\dfrac{193}{16}\ge-\dfrac{193}{16}\)

Vậy GTNN của F là \(-\dfrac{193}{16}\) khi x = \(-\dfrac{15}{8}\)

\(G=8\left(a+2\right)^3-\left(2a+1\right)^3\)

\(G=36a^2+90a+63\)

\(G=9\left(4a^2+10a+7\right)\)

\(G=9\left(4a^2+10a+\dfrac{25}{4}\right)+\dfrac{27}{4}\)

\(G=9\left(2a+\dfrac{5}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}\)

Vậy GTNN của G là \(\dfrac{27}{4}\) khi x = \(-\dfrac{5}{4}\)

\(H=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)

\(H=x^4+8x^3+16x^2-25\)

\(H=\left(x^2+4x\right)^2-25\ge-25\)

Vậy GTNN của H là -25 khi x = -4 hoặc x = 0

\(I=\left(x^6+6\right)^2=x^{12}+12x^6+36\ge36\)

Vậy GTNN của I là 36 khi x = 0

25 tháng 3 2020

Bài 1:

a) (3x - 2)(4x + 5) = 0

<=> 3x - 2 = 0 hoặc 4x + 5 = 0

<=> 3x = 2 hoặc 4x = -5

<=> x = 2/3 hoặc x = -5/4

b) (2,3x - 6,9)(0,1x + 2) = 0

<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

<=> 2,3x = 6,9 hoặc 0,1x = -2

<=> x = 3 hoặc x = -20

c) (4x + 2)(x^2 + 1) = 0

<=> 4x + 2 = 0 hoặc x^2 + 1 # 0

<=> 4x = -2

<=> x = -2/4 = -1/2

d) (2x + 7)(x - 5)(5x + 1) = 0

<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

<=> 2x = -7 hoặc x = 5 hoặc 5x = -1

<=> x = -7/2 hoặc x = 5 hoặc x = -1/5

13 tháng 12 2020

bài 2:

a, (3x+2)(x^2-1)=(9x^2-4)(x+1)

(3x+2)(x-1)(x+1)=(3x-2)(3x+2)(x+1)

(3x+2)(x-1)(x+1)-(3x-2)(3x+2)(x+1)=0

(3x+2)(x+1)(1-2x)=0

b, x(x+3)(x-3)-(x-2)(x^2-2x+4)=0

x(x^2-9)-(x^3+8)=0

x^3-9x-x^3-8=0

-9x-8=0

tự tìm x nha

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

26 tháng 9 2016

Tải trên điện thoaaij về phần mềm PhotoMath thì bạn sẽ có đáp án và bài giải bài thực hiện phép tính này. Nếu thắc mắc về cánh sử dụng thì seach mạng.

22 tháng 10 2018

\(2xy\left(x^2+xy-3y^2\right)\)

\(=2xy.x^2+2xy.xy-2xy.3y^2\)

\(=2x^3y+2x^2y^2-6xy^3\)

nhiều quá bạn ạ

hay bạn tìm hiểu cách thức chung làm dạng bài tìm GTNN chứ như thế này thì làm lâu lắm

19 tháng 8 2018

mik chỉ tìm hiểu đc đến câu I còn lại mik k hiểu lắm, bn có lm đc k, giúp mik vs

20 tháng 12 2019

a) x = 2 7                         b) x = 2.

c) x = 2                          d) x = 1.

5 tháng 10 2021

\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)

\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)

5 tháng 10 2021

\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)

Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)

 

27 tháng 7 2021

nhanh giùm mình được không

 

Bài 1: 

a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)

\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)

10 tháng 12 2021

\(a,\Leftrightarrow2x^2+10x-2x^2=12\Leftrightarrow x=\dfrac{12}{10}=\dfrac{6}{5}\\ b,\Leftrightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(9-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\\ d,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ e,\Leftrightarrow4x^2-4x+1-4x^2+196=0\\ \Leftrightarrow-4x=-197\Leftrightarrow x=\dfrac{197}{4}\)

\(f,\Leftrightarrow x^2+8x+16-x^2+1=16\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\\ g,Sửa:\left(3x+1\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(3x+1-x-1\right)\left(3x+1+x+1\right)=0\\ \Leftrightarrow2x\left(4x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\\ h,\Leftrightarrow x^2+8x-x-8=0\\ \Leftrightarrow\left(x+8\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\\ i,\Leftrightarrow2x^2-13x+15=0\\ \Leftrightarrow2x^2+2x-15x-15=0\\ \Leftrightarrow\left(x+1\right)\left(2x-15\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{15}{2}\end{matrix}\right.\)