Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính [G(x) - f(x) ] = ( \(1-x^2+.....+x^{2020}\)) - (\(x^{2020}-x^{2019}+....-x+1\))
= (\(x^{2020}-x^{2019}+....-x+1\)) - (\(x^{2020}-x^{2019}+....-x+1\))
= 0
=> h(x) = [G(x) - f(x) ] * [G(x) + f(x) ]
= 0 * [G(x) + f(x) ]
= 0
x=2020 nên x+1=2021
\(P\left(x\right)=x^{2021}-x^{2020}\left(x+1\right)+x^{2019}\left(x+1\right)-....+x\left(x+1\right)-2020\)
\(=x^{2021}-x^{2021}-x^{2020}+x^{2020}-...+x^2+x-2020\)
=x-2020=0
a) Có x = 2020 => x + 1 = 2021. Thay 2021 = x + 1 vào A
\(A=x^6-\left(x+1\right)^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(A=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(A=1\)
b) Có x = -19 => x - 1 = -20 => - ( x - 1 ) = 20. Thay 20 = - ( x - 1) vào B
\(B=x^{10}-\left(x-1\right)x^9-\left(x-1\right)x^8-\left(x-1\right)x^7-...-\left(x-1\right)x^2-\left(x-1\right)x-x+1\)
\(B=x^{10}-x^{10}+x^9-x^9+...+x^2-x^2+x-x+1\)
\(B=1\)
Chúc bạn học tốt!!!
\(f\left(x\right)=x^{2020}-20x^{2019}+20x^{2018}-...-20x+30\)
\(\Rightarrow f\left(19\right)=x^{2020}-\left(x-1\right)x^{2019}+\left(x-1\right)x^{2018}-...-\left(x-1\right)x+30\)
\(=x^{2020}-x^{2020}+x^{2019}-x^{2019}-x^{2018}-...-x^2+x+30\)
\(=x+30\)\(=19+30=49\)