\(\frac{x}{\sqrt{x}-\sqrt{y}\sqrt{x}-\sqrt{z}}\)    +\(\frac{y}{\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2020

\(ĐKXĐ:x,y,z\ge0;x\ne y\ne z\)

Ta có :

\(\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)

\(=\frac{-x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{z}-\sqrt{x}\right)}-\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{y}\right)}-\frac{z}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)

\(=\frac{-x.\left(\sqrt{y}-\sqrt{z}\right)-y.\left(\sqrt{z}-\sqrt{x}\right)-z.\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)

Xét \(-x.\left(\sqrt{y}-\sqrt{z}\right)-y.\left(\sqrt{z}-\sqrt{x}\right)-z.\left(\sqrt{x}-\sqrt{y}\right)\)

\(=-x\left(\sqrt{y}-\sqrt{z}\right)-y\sqrt{z}+y\sqrt{x}-z\sqrt{x}+z\sqrt{y}\)

\(=-x\left(\sqrt{y}-\sqrt{z}\right)+\sqrt{zx}\left(\sqrt{y}-\sqrt{z}\right)-\sqrt{yz}\left(\sqrt{y}-\sqrt{z}\right)+\sqrt{xy}\left(\sqrt{y}-\sqrt{z}\right)\)

\(=\left(\sqrt{y}-\sqrt{z}\right).\left(-x+\sqrt{zx}-\sqrt{zy}+\sqrt{xy}\right)\)

\(=\left(\sqrt{y}-\sqrt{z}\right).\left[\sqrt{x}.\left(\sqrt{z}-\sqrt{x}\right)-\sqrt{y}.\left(\sqrt{z}-\sqrt{x}\right)\right]\)

\(=\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)\)

Khi đó :

\(\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)

\(=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}=1\)

Vậy \(\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}=1\)

2 tháng 9 2020

mấy bài này làm hại não lắm :((

\(\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)

\(=\frac{-x}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{-y}{\left(\sqrt{z}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{-z}{\left(\sqrt{z}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}\)

\(=-\left[\frac{x\left(\sqrt{z}-\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{z}\right)+z\left(\sqrt{y}-\sqrt{x}\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\right]\)

đến đây nhân tung ra rồi ghép cặp là okey nhé

7 tháng 10 2018

\(\frac{x+\left(\sqrt{x}-\sqrt{z}\right)^2}{y+\left(\sqrt{y}-\sqrt{z}\right)^2}=\frac{\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)^2-y+\left(\sqrt{x}-\sqrt{z}\right)^2}{\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)^2-x+\left(\sqrt{y}-\sqrt{z}\right)^2}\)

\(=\frac{\left(\sqrt{x}+2\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)+\left(\sqrt{x}-\sqrt{z}\right)^2}{\left(2\sqrt{x}+\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)+\left(\sqrt{y}-\sqrt{z}\right)^2}\)

\(=\frac{\left(\sqrt{x}-\sqrt{z}\right)\left(2\sqrt{x}+2\sqrt{y}-2\sqrt{z}\right)}{\left(\sqrt{y}-\sqrt{z}\right)\left(2\sqrt{x}+2\sqrt{y}-2\sqrt{z}\right)}\)

\(=\frac{\sqrt{x}-\sqrt{z}}{\sqrt{y}-\sqrt{z}}\)

20 tháng 3 2019

có biết huệ ko