K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

x2 =y3 và xy = 54 

14 tháng 8 2016

bạn đặt k ra và xét

nha

tíc mình nha

12 tháng 10 2016

Ta có :

\(\frac{x}{2}=\frac{y}{-3}\)

=> \(\frac{x^2}{2^2}=\frac{y^2}{\left(-3\right)^2}=\left(\frac{x}{2}\right)\left(-\frac{y}{3}\right)\)

=> \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{xy}{-6}=\frac{-54}{-6}=9\)

\(\Rightarrow\begin{cases}x=\pm6\\y=\pm9\end{cases}\)

Mà 2 và - 3 trai dấu 

=> x và y trái dấu 

Vậy \(\left(x;y\right)\in\left\{\left(6;-9\right);\left(-6;9\right)\right\}\)

12 tháng 10 2016

Đặt \(\frac{x}{2}=\frac{y}{-3}=k\\\Rightarrow x=2k;y=-3k \)

Thay x.y = -54

=> 2k. -3k  = -54

          -6k2  = -54 

             k2  = (-54) : (-6)

            k2   = 9

=> k = 9 hoặc k = -9

Với k = 9 => x = 9.2 = 18 ; y = 9 . (-3) = (-27)

Với k = -9 => x = (-9).2 = -18 ; y = (-9).(-3) = 27

 

26 tháng 10 2015

=>/1/5-x/=1/5-1/5

=>/1/5-x/=0

=>1/5-x=0

=>x=1/5

2) đặt :x/2=y/3=k

ta có: x=2.k

y=3.k

=>x.y=2k.3k=k^2.6=54

=>k^2=54:6

=>k^2=9

=>k=3

=>x/2=3=>x=6

=>y/3=3=>y=9

9 tháng 7 2019

\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\frac{x}{10}=2\Rightarrow x=10.2=20\)

\(\frac{y}{6}=2\Rightarrow y=2.6=12\)

\(\frac{z}{21}=2\Rightarrow z=21.2=42\)

\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)

\(\Rightarrow ab=2k.3k=6k^2=54\)

\(\Rightarrow k^2=9\Leftrightarrow k=3\)

\(\frac{x}{2}=3\Rightarrow x=6\)

\(\frac{y}{3}=3\Rightarrow y=9\)

9 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)   =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x = 20; y = 12; z = 42

b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)

          \(\frac{y}{5}=\frac{z}{7}\)  => \(\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)

=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\)  =>  \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)

Vậy ...

m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)

Do đó: x=8; y=10; z=7

n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

28 tháng 10 2019

a, Đặt \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=7k\\z=5k\end{matrix}\right.\)

\(yz-xy-z^2=-72\)

\(\Rightarrow35k^2-28k^2-25k^2=-72\\ \Rightarrow k^2\left(35-28-25\right)=-72\\ k^2\cdot\left(-18\right)=-72\\ \Rightarrow k^2=4\\ \Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)

Với k = 2

\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot2=8\\y=7\cdot2=14\\z=5\cdot2=10\end{matrix}\right.\)

Với k = -2

\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot\left(-2\right)=-8\\y=7\cdot\left(-2\right)=-14\\z=5\cdot\left(-2\right)=-10\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\in\left\{\left(8;14;10\right);\left(-8;-14;-10\right)\right\}\)

b, Đặt \(\frac{x}{2}=\frac{y}{7}=\frac{z}{8}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=7k\\z=8k\end{matrix}\right.\)

\(2x^2+xy-xz=54\)

\(\Rightarrow8k^2+14k^2-16k^2=54\\ \Rightarrow k^2\left(8+14-16\right)=54\\ \Rightarrow k^2\cdot6=54\\ \Rightarrow k^2=9\\ \Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\)

Với k = 3

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot3=6\\y=7\cdot3=21\\z=8\cdot3=24\end{matrix}\right.\)

Với k = -3

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot\left(-3\right)=-6\\y=7\cdot\left(-3\right)=-21\\z=8\cdot\left(-3\right)=-24\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\in\left\{\left(6;21;24\right);\left(-6;-21;-24\right)\right\}\)

c, Đặt \(\frac{x+3}{5}=\frac{y-4}{3}=\frac{z-5}{2}=k\Rightarrow\left\{{}\begin{matrix}x=5k-3\\y=3k+4\\z=2k+5\end{matrix}\right.\)

\(2x-3y-z=-26\)

\(\Rightarrow2\left(5k-3\right)-3\left(3k+4\right)-\left(2k+5\right)=-26\\ \Rightarrow10k-6-9k-12-2k-5=-26\\ \Rightarrow-k=-3\\ \Rightarrow k=3\\ \Rightarrow\left\{{}\begin{matrix}x=5\cdot3-3=12\\y=3\cdot3+4=13\\z=2\cdot3+5=11\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(12;13;11\right)\)

14 tháng 10 2019

a) Ta có:

\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\) (1)

\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}.\)

Có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}.\)

\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{15}=\frac{z}{9}.\)

=> \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)\(x-y-z=1.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{1}{-4}=\frac{-1}{4}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=-\frac{1}{4}\Rightarrow x=\left(-\frac{1}{4}\right).20=-5\\\frac{y}{15}=-\frac{1}{4}\Rightarrow y=\left(-\frac{1}{4}\right).15=-\frac{15}{4}\\\frac{z}{9}=-\frac{1}{4}\Rightarrow z=\left(-\frac{1}{4}\right).9=-\frac{9}{4}\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(-5;-\frac{15}{4};-\frac{9}{4}\right).\)

Chúc bạn học tốt!

7 tháng 8 2019

\(10x=15y=6z\Rightarrow x=\frac{3}{2}y;z=\frac{5}{2}y;z=\frac{5}{3}x\Rightarrow10x-5y+z=10y+z=\frac{5}{2}y+10y=\frac{25}{2}y=25\Rightarrow y=2\Rightarrow x=3;z=5\)

a) Ta có : \(10x=15y=6z\)

\(\Rightarrow\frac{10x}{60}=\frac{15y}{60}=\frac{6z}{60}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{10}\Rightarrow\frac{10x}{60}=\frac{5y}{20}=\frac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{10x}{60}=\frac{5y}{20}=\frac{z}{10}=\frac{10x-5y+z}{60-20+10}=\frac{25}{50}=\frac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\\z=5\end{matrix}\right.\)

Vậy : \(\left(x,y,z\right)=\left(3,2,5\right)\)

c)Đặt \(\frac{x}{2}=\frac{y}{3}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)

\(\Rightarrow xy=2k.3k=54\)

\(\Leftrightarrow6.k^2=54\)

\(\Leftrightarrow k^2=9\)

\(\Leftrightarrow k=\pm9\)

+) Với \(k=9\Rightarrow\left\{{}\begin{matrix}x=2.9=18\\y=3.9=27\end{matrix}\right.\)

+) Với \(k=-9\Rightarrow\left\{{}\begin{matrix}x=2.\left(-9\right)=-18\\y=3.\left(-9\right)=-27\end{matrix}\right.\)

Vậy : \(\left(x,y\right)\in\left\{\left(18,27\right);\left(-18,-27\right)\right\}\)