Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{5x+y}{x^2-5xy}+\frac{5x-y}{x^2+5xy}\right).\frac{x^2-25y^2}{x^2+y^2}\)
\(=\left(\frac{5x+y}{x\left(x-5y\right)}+\frac{5x-y}{x\left(x+5y\right)}\right).\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\frac{\left(5x+y\right)\left(x+5y\right)+\left(5x-y\right)\left(x-5y\right)}{x\left(x-5y\right)\left(x+5y\right)}.\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\frac{10\left(x^2+y^2\right)}{x\left(x^2+y^2\right)}=\frac{10}{x}\)
\(\left(\frac{5x+y}{x^2-5xy}+\frac{5x-y}{x^2+5xy}\right).\frac{x^2-25y^2}{x^2+y^2}\)
\(=\left(\frac{5x+y}{x\left(x-5y\right)}+\frac{5x-y}{x\left(x+5y\right)}\right)\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\frac{\left(5x+y\right)\left(x+5y\right)+\left(5x-y\right)\left(x-5y\right)}{x\left(x-5y\left(x+4y\right)\right)}.\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\frac{10\left(x^2+y^2\right)}{x\left(x^2+y^2\right)}=\frac{10}{x}\)
\(x^2+3cd\left(2-3cd\right)-10xy-1+25y^2=x^2+6cd-\left(3cd\right)^2-10xy-1+\left(5y\right)^2\\ \)
\(=x^2-10xy+\left(5y\right)^2-\left(1-6cd+\left(3cd\right)^2\right)\)
\(=\left(x-5y\right)^2+6cd-1-\left(3cd\right)^2=\left(x-5y\right)^2-\left(1-3cd\right)^2\)
\(=\left(x-5y-1+3cd\right)\left(x-5y+1-3cd\right)\)
a,\(15x^3y^4-20x^4y^3+30x^3y^3\)
=\(5x^3y^3\left(3y-4x+6\right)\)
b,\(x^2+10xy+25y^2\)
=\(x^2+2.x.5.y+\left(5y\right)^2\)
=\(\left(x+5y\right)^2\)
c,\(x^2-2xy+y^2-9z^2\)
=\(\left(x^2-2xy+y^2\right)-\left(3z\right)^2\)
=\(\left(x-y\right)^2-\left(3z\right)^2\)
=\(\left(x-y+3z\right)\left(x-y-3z\right)\)
chúc bn hok tốt
b) \(a^5+a^4+a^3+a^2+a+1\)
\(=a^4\left(a+1\right)+a^2\left(a+1\right)+a+1\)
\(=\left(a^4+a^2+1\right)\left(a+1\right)\)
c) \(x^3-1+5x^2-5+3x-3\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left[x^2+x+1+5\left(x+1\right)+3\right]\)
\(=\left(x-1\right)\left(x^2+6x+9\right)=\left(x-1\right)\left(x+3\right)^2\)
a) \(x^2+3ab\left(2-3ab\right)-10xy-1+25y^2\)
\(=\left(x^2-10xy+25y^2\right)+6ab-9a^2b^2-1\)
\(=\left(x-5y\right)^2-\left(9a^2b^2-6ab+1\right)\)
\(=\left(x-5y\right)^2-\left(3ab-1\right)^2\)
\(=\left(x-5y-3ab+1\right)\left(x-5y+3ab-1\right)\)
1) \(4x^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
2) \(8x^3-27=\left(2x-3\right)\left(4x^2+6x+9\right)\)
3) \(x^3+27y^3=\left(x+3y\right)\left(x^2-3xy+9y^2\right)\)
4) \(x^2-25y^2=\left(x-5y\right)\left(x+5y\right)\)
5) \(8x^3+\frac{1}{27}=\left(2x+\frac{1}{3}\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)\)
a)Bạn xem lại đề được không
b)Đặt x^2 ra ngoài
c)Đặt x^3=t rồi quy đồng
d)Bt = -17(x^2-1), còn ẩn phụ gì nữa?
c: \(=\dfrac{\left(x+2\right)^2}{\left(x-5y\right)^2}\cdot\dfrac{\left(x-5y\right)\left(x+5y\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)\left(x+5y\right)}{\left(x-5y\right)\left(x-2\right)}\)
\(\frac{x^2+25y^2-10xy}{x^2-25y^2}\)
\(\frac{\left(x-5y\right)^2}{\left(x-5y\right)\cdot\left(x+5y\right)}\)
\(\frac{x-5y}{x+5y}\)
đk: \(x\ne\pm5y\)
\(\frac{x^2+25y^2}{x^2-25y^2}-\frac{10xy}{x^2-25y^2}\)
\(=\frac{x^2+25y^2-10xy}{\left(x-5y\right)\left(x+5y\right)}\)
\(=\frac{\left(x-5y\right)^2}{\left(x-5y\right)\left(x+5y\right)}\)
\(=\frac{x-5y}{x+5y}\)