Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{2018}+\frac{x+2}{2019}=\frac{x+3}{2020}+\frac{x+4}{2021}\)
\(\Leftrightarrow\left(\frac{x+1}{2018}-1\right)+\left(\frac{x+2}{2019}-1\right)=\left(\frac{x+3}{2020}-1\right)+\left(\frac{x+4}{2021}-1\right)\)
\(\Leftrightarrow\frac{x-2017}{2018}+\frac{x-2017}{2019}=\frac{x-2017}{2020}+\frac{x-2017}{2021}\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\)
\(\Leftrightarrow x-2017=0\)\(\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\ne0\right)\)
\(\Leftrightarrow x=2017\)
Vậy \(S=\left\{2017\right\}\)
\(a.\frac{x+5}{2021}+\frac{x+6}{2020}+\frac{x+7}{2019}=-3\\ \Leftrightarrow\frac{x+5}{2021}+1+\frac{x+6}{2020}+1+\frac{x+7}{2019}+1=0\\ \Leftrightarrow\frac{x+2026}{2021}+\frac{x+2026}{2020}+\frac{x+2026}{2019}=0\\ \Leftrightarrow\left(x+2026\right)\left(\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}\right)=0\\\Leftrightarrow x+2026=0\left(Vi\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}\ne0\right)\\ \Leftrightarrow x=-2026\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-2026\right\}\)
\(b.\frac{2-x}{100}-1=\frac{1-x}{101}-\frac{x}{102}\\ \Leftrightarrow\frac{2-x}{100}+1=\frac{1-x}{101}+1+1-\frac{x}{102}\\\Leftrightarrow \frac{102-x}{100}-\frac{102-x}{101}-\frac{102-x}{102}=0\\ \Leftrightarrow\left(102-x\right)\left(\frac{1}{100}-\frac{1}{101}-\frac{1}{102}\right)=0\\ \Leftrightarrow102-x=0\left(Vi\frac{1}{100}-\frac{1}{101}-\frac{1}{102}\ne0\right)\\ \Leftrightarrow x=102\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{102\right\}\)
c/ PT tương đương
\(\frac{x+1}{93}-1+\frac{x-2}{45}-2+\frac{x+4}{32}-3=0\)
\(\Leftrightarrow\frac{x-92}{93}+\frac{x-92}{45}+\frac{x-92}{32}=0\)
\(\Leftrightarrow\left(x-92\right)\left(\frac{1}{93}+\frac{1}{45}+\frac{1}{32}\right)=0\Rightarrow x=92\)
\(\frac{x+1}{2010}+\frac{x+2}{2009}+\frac{x+3}{2008}+...+\frac{x+2010}{1}=\left(-2010\right)\)
\(\Rightarrow\left(\frac{x+1}{2010}+1\right)+\left(\frac{x+2}{2009}+1\right)+...+\left(\frac{x+2010}{1}+1\right)=-2010+2010\)
\(\Rightarrow\frac{x+2011}{2010}+\frac{x+2011}{2009}+...+\frac{x+2011}{1}=0\)
\(\Rightarrow\left(x+2011\right)\left(1+\frac{1}{2}+...+\frac{1}{2009}+\frac{1}{2010}\right)=0\)
\(\Rightarrow x+2011=0\Leftrightarrow x=-2011\)
1.Tìm điều kiện xác định của phương trình:
a) 1x2+11x2+1 -4xx4xx =0 (1)
b) 1x2−11x2−1 -2020 (2)
c) x2020x−2019x2020x−2019 + x−2021x2+1 (2)
Giải:
a) Dễ thấy: x2 + 1 ≠ 0 \(\forall\) x
Vậy điều kiện để phương trình (1) xác định là x ≠ 0.
b) Để phương trình (2) xác định thì x2 - 1 ≠ 0 ⇔ (x + 1)(x - 1) ≠ 0
⇔ \(\left[{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\) ⇔ x ≠ \(\pm\) 1
Vậy điều kiện để phương trình (2) xác định là x ≠ \(\pm\) 1.
c) Dễ thấy: x2 + 1 ≠ 0 \(\forall\) x
Vậy điều kiện để phương trình (3) xác định là x ≠ 2019.
\(\frac{x+1}{2010}+\frac{x+3}{2008}+\frac{x+4}{2007}+\frac{x+9}{2002}=-4\)
\(\Leftrightarrow\frac{x+1}{2010}+1+\frac{x+3}{2008}+1+\frac{x+4}{2007}+1+\frac{x+9}{2002}+1=-4+4\)
\(\Leftrightarrow\frac{x+2011}{2010}+\frac{x+2011}{2008}+\frac{x+2011}{2007}+\frac{x+2011}{2002}=0\)
\(\Leftrightarrow\left(x+2011\right)\left(\frac{1}{2010}+\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2002}\right)=0\)
\(\Leftrightarrow x+2011=0\)
\(\Leftrightarrow x=-2011\)
\(\frac{x-2010-2011}{2009}+\frac{x-2009-2011}{2010}+\frac{x-2009-2010}{2011}=3\)
\(\Leftrightarrow\left(\frac{x-2010-2011}{2009}-1\right)+\left(\frac{x-2009-2011}{2010}-1\right)+\left(\frac{x-2009-2010}{2011}-1\right)=0\)
\(\Leftrightarrow\frac{x-6030}{2009}+\frac{x-6030}{2010}+\frac{x-6030}{2011}=0\)
\(\Leftrightarrow\left(x-6030\right)\left(\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}\right)\)
\(\Leftrightarrow x-6030=0\)(vì \(\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}>0\))
\(\Leftrightarrow x=6030\)
Vậy ................
a/ \(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)
\(\Leftrightarrow\frac{2-x}{2007}+1=\frac{1-x}{2008}+1+1-\frac{x}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}=\frac{2009-x}{2008}+\frac{2009-x}{2009}\)
\(\Leftrightarrow\left(2009-x\right)\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=00\)
\(\Leftrightarrow x=2009\)
bn ơi, X với x giống nhau đúng ko, nếu mà X với x là một thì sẽ làm như này:
\(\frac{3-x}{2018}+\frac{x-1}{2020}=\frac{-x}{2021}+1\)
\(\Leftrightarrow\) \(\frac{3-x}{2018}+1+\frac{x-1}{2020}-1=\frac{-x}{2021}+1+1-1\)
\(\Leftrightarrow\) \(\frac{2021-x}{2018}-\frac{2021-x}{2020}=\frac{2021-x}{2021}\)
\(\Leftrightarrow\) \(\frac{2021-x}{2018}-\frac{2021-x}{2020}-\frac{2021-x}{2021}=0\)
\(\Leftrightarrow\) (2021 - x)(\(\frac{1}{2018}-\frac{1}{2020}-\frac{1}{2021}\)) = 0
\(\Leftrightarrow\) 2021 - x = 0
\(\Leftrightarrow\) x = 2021
Vậy S = {2021}
Chúc bn học tốt!!
\(\frac{x+1}{2011}+\frac{x+2}{2010}=\frac{x+3}{2009}+\frac{x+4}{2008}\Leftrightarrow\frac{x+1}{2011}+1+\frac{x+2}{2010}+1=\frac{x+3}{2009}+1+\frac{x+4}{2008}+1\)
\(\Leftrightarrow\frac{x+1}{2011}+\frac{2011}{2011}+\frac{x+2}{2010}+\frac{2010}{2010}=\frac{x+3}{2009}+\frac{2009}{2009}+\frac{x+4}{2008}+\frac{2008}{2008}\)
\(\Leftrightarrow\frac{x+1+2011}{2011}+\frac{x+2+2010}{2010}=\frac{x+3+2009}{2009}+\frac{x+4+2008}{2008}\)
\(\Leftrightarrow\frac{x+2012}{2011}+\frac{x+2012}{2010}=\frac{x+2012}{2009}+\frac{x+2012}{2008}\)
\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2012\right)\left(\frac{1}{2009}+\frac{1}{2008}\right)\)
\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}=0\right)\)
mà 1/2011+1/2010-1/2009-1/2008 khác 0
\(\Rightarrow x+2012=0\Rightarrow x=-2012\)
\(\left(3x-2\right)^2-x\left(9x-2\right)=24\Leftrightarrow9x^2-12x+4-9x^2+2x=24\)
\(\Leftrightarrow-10x+4=24\Leftrightarrow-10x=20\Leftrightarrow x=-2\)
1; Ta có : x+1/2011 + x+2/2010 = x+3/2009 + x+4/ 2008
Suy ra: 2+(x+1/2011 + x+2/2010 ) = 2+( x+3/2009 + x+4/2008)
suy ra ban tach 2=1+1 roi cong 1 voi tưng phân số trên nha sẽ ra kết quả ngay thôi
2; gợi ý nè : (3x-2)^2 =(3x)^2 + 2*3x*2+2^2
\(\frac{x+2007}{2019}+\frac{x+2008}{2020}=\frac{x+2009}{2021}+\frac{x+2010}{2022}\)
\(\left(\frac{x+2007}{2019}-1\right)+\left(\frac{x+2008}{2020}-1\right)=\left(\frac{x+2009}{2021}-1\right)+\left(\frac{x+2010}{2022}-1\right)\)
\(\frac{x-12}{2019}+\frac{x-12}{2020}=\frac{x-12}{2021}+\frac{x-12}{2022}\)
\(\frac{x-12}{2019}+\frac{x-12}{2020}-\frac{x-12}{2021}-\frac{x-12}{2022}=0\)
\(\left(x-12\right)\left(\frac{1}{2019}+\frac{1}{2020}-\frac{1}{2021}-\frac{1}{2022}\right)=0\)
\(\Rightarrow x-12=0\left(do\frac{1}{2019}+\frac{1}{2020}-\frac{1}{2021}-\frac{1}{2022}\ne0\right)\)
\(x=0+12\)
\(x=12\)
\(\frac{x+2007}{2019}+\frac{x+2008}{2020}=\frac{x+2009}{2021}+\frac{x+2010}{2022}\)
<=> \(\left(\frac{x+2007}{2019}-1\right)+\left(\frac{x+2008}{2020}-1\right)=\left(\frac{x+2009}{2021}-1\right)+\left(\frac{x+2010}{2022}-1\right)\)
<=> \(\frac{x-12}{2019}+\frac{x-12}{2020}=\frac{x-12}{2021}+\frac{x-12}{2022}\)
<=> \(\frac{x-12}{2019}+\frac{x-12}{2020}-\frac{x-12}{2021}-\frac{x-12}{2022}=0\)
<=> \(\left(x-12\right)\left(\frac{1}{2019}+\frac{1}{2020}-\frac{1}{2021}-\frac{1}{2022}\right)=0\)
Dễ thấy \(\frac{1}{2019}+\frac{1}{2020}-\frac{1}{2021}-\frac{1}{2022}\ne0\)
nên pt <=> x - 12 = 0 <=> x = 12
Vậy ...