Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 8x3 +1 # 0 => x # -1/2
2) 2x2 -7x + 5 # => 2x2 -2x - 5x +5 # 0 => 2x(x-1) -5(x-1) # 0 => (x-1)(2x-5) # 0 => x # 1 và x # 5/2
3) x2 - 1 # 0 => x # 1 và x # -1
x # 0
x + 2 # 0 => x # -2
Câu 1:
a)\(x^2-4+\left(x-2\right)\left(2x+1\right)=0\)
\(\Rightarrow x^2-4+2x^2+x-4x-2=0\)
\(\Rightarrow3x^2-3x-6=0\)
\(\Rightarrow x^2-x-2=0\)(Vì nhân tử chung là 3 thì ra bằng 0)
\(\Rightarrow x^2-2x+x-2=0\)
\(\Rightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy x=-1;2
Câu 2:
a)\(ĐKXĐ:X\ne1;X\ne-1;X\ne-2;\)
b)\(\frac{x+1}{x-1}-\frac{x-1}{x+2}=\frac{3}{x^2-1}\)(\(ĐKXĐ:X\ne1;X\ne-1;X\ne-2;\))
\(\Rightarrow\frac{\left(x+1\right)^2\left(x+2\right)}{\left(x^2-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1^{ }\right)^2}{\left(x^2-1\right)\left(x+2\right)}=\frac{3\left(x+2\right)}{\left(x^2-1\right)\left(x+2\right)}\)
\(\Rightarrow\left(x+1\right)^2\left(x+2\right)-\left(x+1\right)\left(x-1\right)^2=3x+6\)
\(\Rightarrow\left(x+1\right)\left[\left(x+1\right)\left(x+2\right)-\left(x-1\right)^2\right]=3x+6\)
\(\Rightarrow\left(x+1\right)\left[x^2+3x+2-x^2+2x-1\right]=3x+6\)
\(\Rightarrow\left(x+1\right)\left[5x+1\right]=3x+6\)
\(\Rightarrow5x^2+6x+1-3x-6=0\)
\(\Rightarrow5x^2+3x-5=0\)
\(\Rightarrow x=0,745\left(TM\right)\)
a)Ta có:\(1-2x=\frac{-7x-11}{5}\)
\(\Rightarrow\frac{5-10x}{5}=\frac{-7x-11}{5}\)
\(\Rightarrow5-10x=-7x-11\)
\(\Rightarrow5-10x+7x+11=0\)
\(\Rightarrow16-3x=0\)
\(\Rightarrow x=\frac{16}{3}\)
a ) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\x-1\ne0\\x^2-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-1\\x\ne1\end{cases}}}\)
b ) \(P=\frac{2x+3}{x+1}-\frac{x+2}{x-1}+\frac{3x+5}{x^2-1}\)
\(=\frac{\left(2x+3\right)\left(x-1\right)-\left(x+2\right)\left(x+1\right)+\left(3x+5\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(2x^2+x-3\right)-\left(x^2+3x+2\right)+\left(3x+5\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x+1}\)
Sr còn thiếu
Để \(P\in Z\Leftrightarrow\frac{x}{x+1}=\frac{x+1-1}{x+1}=1-\frac{1}{x+1}\in Z\Rightarrow x+1\inƯ\left(1\right)\)
\(\Rightarrow x+1=\left\{-1;1\right\}\Rightarrow x=\left\{-2;0\right\}\)
x = vo nghiem
ứ hoàng anh nói đúng rồi đó!