Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)
(đk:x khác \(\frac{1}{2}\))
\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)
Vậy x=\(\frac{25}{7}\)
b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)
(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))
\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)
Vậy x=4
2)
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)
\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)
\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\)
\(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{16}{x^2-1}\)
\(\Rightarrow\left(x+1\right)^2-\left(x-1\right)^2=16\)
\(\Rightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=16\)
\(\Rightarrow2\left(2x\right)=16\)
\(\Rightarrow4x=16\)
\(\Rightarrow x=4\)
vậy \(x=4\)
\(\frac{6x+1}{x^2-7x+10}+\frac{5}{x-2}=\frac{3}{x-5}\)
\(\frac{6x+1}{\left(x-2\right)\left(x-5\right)}+\frac{5\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=\frac{3\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}\)
\(\Rightarrow6x+1+5x-5=3x-6\)
\(\Rightarrow11x-3x=-6+4\)
\(\Rightarrow8x=-2\)
\(\Rightarrow x=\frac{-1}{4}\)
3) \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\frac{x^2+x+1}{x^3-1}+\frac{\left(2x^2-5\right)}{x^3-1}=\frac{4\left(x-1\right)}{x^3-1}\)
\(\Rightarrow x^2+x+1+2x^2-5=4x-4\)
\(\Rightarrow3x^2-3x=-4+4\)
\(\Rightarrow3x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
\(\Leftrightarrow35x-5+60x=96-6x\)
\(\Leftrightarrow95x-5=96-6x\)
\(\Leftrightarrow95x+6x=96+5\)
\(\Leftrightarrow101x=101\)
\(\Leftrightarrow x=1\)
2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)
\(\Leftrightarrow30x+9=36+24+32x\)
\(\Leftrightarrow30x+9=32x+60\)
\(\Leftrightarrow30x-32x=60-9\)
\(\Leftrightarrow-2x=51\)
\(\Leftrightarrow x=-\frac{51}{2}\)
3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)
\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)
\(\Leftrightarrow2x+1=5x+1\)
\(\Leftrightarrow2x=5x\)
\(\Leftrightarrow x=0\)
4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)
=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)
=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)
=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)
=> 27 - 9x + 80 - 16x = 12 - 12x - 48
=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0
=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0
=> 143 - 13x = 0
=> 13x = 143
=> x = 11
5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)
=> 6x - 18 + 7x - 35 - 13x - 4 = 0
=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0
=> -57 = 0(vô nghiệm)
6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)
=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)
=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)
=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)
=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)
=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)
=> \(12x+10-10x-3=12x+2\)
=> \(2x+10-3=12x+2\)
=> 2x + 10 - 3 - 12x - 2 = 0
=> (2x - 12x) + (10 - 3 - 2) = 0
=> -10x + 5 = 0
=> -10x = -5
=> x = 1/2
7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)
=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)
=> 6x - 3 - 5x + 10 - x - 7 = 0
=> (6x - 5x - x) + (-3 + 10 - 7) = 0
=> 0x + 0 = 0
=> 0x = 0
=> x tùy ý
Bài 8 tự làm nhé
\(ĐKXĐ:x\ne\pm5\)
\(\frac{5}{x+5}-\frac{x-3}{5-x}=\frac{2x-40}{x^2-25}\)
\(\Leftrightarrow\frac{5}{x+5}+\frac{x-3}{x-5}=\frac{2x-40}{x^2-25}\)
\(\Leftrightarrow\frac{5x-25+5x-15}{x^2-25}=\frac{2x-40}{x^2-25}\)
\(\Rightarrow10x-40=2x-40\)
\(\Leftrightarrow x=0\left(TMĐKXĐ\right)\)
Vậy x=0
\(\frac{5}{x+5}-\frac{x-3}{5-x}=\frac{2x-40}{x^2-25}\) ( đkxđ : \(x\ne\pm5\))
( 5 - x ) = -( 5 - x ) = -5 + x = x - 5
<=> \(\frac{5}{x+5}-\frac{x-3}{x-5}=\frac{2x-40}{\left(x+5\right)\left(x-5\right)}\)
<=> \(\frac{5\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}-\frac{\left(x+5\right)\left(x-3\right)}{\left(x+5\right)\left(x-5\right)}=\frac{2x-40}{\left(x+5\right)\left(x-5\right)}\)
<=> \(5x-25-x^2+2x-15=2x-40\)
<=> \(5x-x^2+2x-2x=-40+25+15\)
<=> \(5x-x^2=0\)
<=> \(x^2-5x=0\)
<=> \(x\left(x-5\right)=0\)
<=> x = 0 ( nhận ) hoặc x = 5 ( loại do đkxđ )
Vậy nghiệm của phương trình là x = 0
<=>
a)\(2+\frac{3}{x-5}=1\)
\(\Rightarrow\frac{3}{x-5}=-1\)
\(\Rightarrow3=-x+5\)
\(\Leftrightarrow x+3=5\)
\(\Rightarrow x=2\)
\(\frac{x-5}{3}-\frac{x-3}{5}=\frac{5}{x-3}-\frac{3}{x+5}\)
\(\left(x-5\right)5-3\left(x-3\right)=5\left(x+5\right)-3\left(x-3\right)\)
\(5x-25-3x+9=5x+25-3x+9\)
\(2x-16=2x+34\)
\(2x-2x=34+16\)
\(0=34+16\)
Vậy pt vô nghiệm