Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{3\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{1\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{4}\right)}{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{4}\right)}=\dfrac{2}{3}+\dfrac{1}{3}=1\)
Bài 1:
\(\frac{\frac{5}{131}+\frac{5}{141}-\frac{5}{191}-\frac{5}{4011}}{\frac{7}{131}+\frac{7}{141}+\frac{7}{-191}-\frac{7}{4011}}=\frac{5\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}{7\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}=\frac{5}{7}\)
Bài 2:
a) \(\frac{x}{7}+\left(\frac{-3}{7}\right)^2=\frac{2}{7}:\frac{4}{3}\)
\(\Rightarrow\frac{x}{7}+\frac{9}{49}=\frac{3}{14}\)
\(\Rightarrow\frac{x}{7}=\frac{3}{98}\)
\(\Rightarrow98x=21\)
\(\Rightarrow x=\frac{3}{14}\)
Vậy \(x=\frac{3}{14}\)
b) \(\left(x-1\right)^{x+6}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+6}-\left(x-1\right)^{x+4}=0\)
\(\Rightarrow\left(x-1\right)^{x+4}.\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left(x-1\right)^{x+1}=0\) hoặc \(\left(x-1\right)^2-1=0\)
+) \(\left(x-1\right)^{x+1}=0\Rightarrow x-1=0\Rightarrow x=1\)
+) \(\left(x-1\right)^2-1=0\)
\(\Rightarrow\left(x-1\right)^2=1\)
\(\Rightarrow\left(x-1\right)=\pm1\)
+ \(x-1=1\Rightarrow x=2\)
+ \(x-1=-1\Rightarrow x=0\)
Vậy \(x\in\left\{0;2;1\right\}\)
1)
\(\frac{\frac{5}{131}+\frac{5}{141}-\frac{5}{191}-\frac{5}{4011}}{\frac{7}{131}+\frac{7}{141}+\frac{7}{-191}-\frac{7}{4011}}\)
\(=\frac{5\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}{7\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}\)
\(=\frac{5}{7}\)
2) \(\frac{x}{7}+\left(-\frac{3}{7}\right)^2=\frac{2}{7}:\frac{4}{3}\)
\(=\frac{x}{7}+\frac{9}{49}=\frac{3}{14}\)
\(=\frac{x}{7}=\frac{3}{14}-\frac{9}{49}=\frac{3}{98}\)
\(\Rightarrow98x=21\)
\(\Rightarrow x=\frac{3}{14}\)
a)
\(\begin{array}{l}x.\frac{{14}}{{27}} = \frac{{ - 7}}{9}\\x = \frac{{ - 7}}{9}:\frac{{14}}{{27}}\\x = \frac{{ - 7}}{9}.\frac{{27}}{{14}}\\x = \frac{{ - 3}}{2}\end{array}\)
Vậy \(x = \frac{{ - 3}}{2}\).
b)
\(\begin{array}{l}\left( {\frac{{ - 5}}{9}} \right):x = \frac{2}{3}\\x = \left( {\frac{{ - 5}}{9}} \right):\frac{2}{3}\\x = \left( {\frac{{ - 5}}{9}} \right).\frac{3}{2}\\x = \frac{{ - 5}}{6}\end{array}\)
Vậy \(x = \frac{{ - 5}}{6}\).
c)
\(\begin{array}{l}\frac{2}{5}:x = \frac{1}{{16}}:0,125\\\frac{2}{5}:x = \frac{1}{{16}}:\frac{1}{8}\\\frac{2}{5}:x = \frac{1}{{16}}.8\\\frac{2}{5}:x = \frac{1}{2}\\x = \frac{2}{5}:\frac{1}{2}\\x = \frac{2}{5}.2\\x = \frac{4}{5}\end{array}\)
Vậy \(x = \frac{4}{5}\)
d)
\(\begin{array}{l} - \frac{5}{{12}}x = \frac{2}{3} - \frac{1}{2}\\ - \frac{5}{{12}}x = \frac{4}{6} - \frac{3}{6}\\ - \frac{5}{{12}}x = \frac{1}{6}\\x = \frac{1}{6}:\left( { - \frac{5}{{12}}} \right)\\x = \frac{1}{6}.\frac{{ - 12}}{5}\\x = \frac{{ - 2}}{5}\end{array}\)
Vậy \(x = \frac{{ - 2}}{5}\).
Chú ý: Khi trình bày lời giải bài tìm x, sau khi tính xong, ta phải kết luận.
\(3\frac{1}{3}\div2\frac{2}{5}-1< x< 7\frac{2}{3}\cdot\frac{3}{7}+\frac{5}{7}\)
\(\frac{25}{18}-1< x< \frac{23}{7}+\frac{5}{7}\)
\(\frac{7}{18}< x< \frac{28}{7}\)
\(\frac{49}{126}< x< \frac{504}{126}\)
\(\Rightarrow x=\left(\frac{50}{126};\frac{51}{126};\frac{52}{126};......;\frac{503}{126}\right)\)
\(\frac{3}{7}\cdot15\cdot\frac{1}{3}+\frac{3}{7}\cdot5\cdot\frac{2}{5}\le x\le\left(3\frac{1}{2}:7-6\frac{1}{2}\right)\cdot\left(-2\frac{1}{3}\right)\)
\(\Leftrightarrow\frac{15}{7}+\frac{6}{7}\le x\le-6\cdot\frac{-5}{3}\)
\(\Leftrightarrow3\le x\le10\)
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{4;5;6;7;8;9\right\}\)
\(\frac{x-1}{5}=\frac{2}{7}\)
\(\Rightarrow7\left(x-1\right)=2.5=10\)
\(\Rightarrow x-1=\frac{10}{7}\)
\(\Rightarrow x=\frac{10}{7}+1\)
\(\Rightarrow x=\frac{17}{7}\)
x−15 =27
⇒7(x−1)=2.5=10
⇒x−1=107
⇒x=107 +1
⇒x=177