\(\frac{x-1}{2}\)=\(\frac{y-2}{3}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2x+3y-z-5}{9}=\frac{x+1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) có 2x + 3y - z = 50

\(\Rightarrow\frac{50-5}{9}=5=\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\Rightarrow\hept{\begin{cases}x-1=10\\y-2=15\\z-3=20\end{cases}\Rightarrow\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}}\)

3 tháng 3 2020

Trả lời:

Ta có:\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}\)\(=\frac{2x+3y-z-5}{9}\)(Tính chất dãy tỉ số bẳng nhau)

\(2x+3y-z=50\)

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{50-5}{9}=\frac{45}{9}=5\)

\(\Rightarrow\hept{\begin{cases}2x-2=20\\3y-6=45\\z-3=20\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x=22\\3y=51\\z=23\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)

Vậy\(\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)

Hok tốt!

Vuong Dong Yet

3 tháng 3 2020

Ta có :

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)

\(\Leftrightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12\left(x+y+z\right)}{18+16+15}=\frac{12\cdot49}{49}=12\) ( do \(x+y+z=49\) )

\(\Rightarrow\hept{\begin{cases}\frac{12x}{18}=12\\\frac{12y}{16}=12\\\frac{12z}{15}=12\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\) ( thỏa mãn )

Vậy : \(\left(x,y,z\right)=\left(18,16,15\right)\)

3 tháng 3 2020

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)

\(\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)

\(\Rightarrow\frac{12x+12y+12z}{18+16+15}=\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)     

\(\Rightarrow\frac{12\left(x+y+z\right)}{49}=\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) có  x + y + z = 49

\(\Rightarrow\frac{12\cdot49}{49}=12=\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)

\(\Rightarrow\hept{\begin{cases}2x=36\\3y=48\\4z=60\end{cases}\Rightarrow\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}}\)

5 tháng 8 2016

1. Tìm x, y, z bik 3x = 2y, 7y = 5z và x-y+z = 32
Ta có 3x=2y => x/2=y/3 <=> x/10 = y/15 (1)
7y = 5z => z/7 = y/5 <=> z/21 = y/15 (2)
Từ 1 và 2 ta suy ra x/10 = y/15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2
Vậy x = 10*2 = 20
y = 15*2 = 30
z = 21*2 = 42

17 tháng 8 2019

d)

Đặt x/2=y/3=z/5=k

suy ra x = 2k, y=3k,z=5k

thay x=2k,y=3k,z=5k vào xyz= 810

ta có: 2k.3k.5k= 810

             30k^3= 810

                 k^3= 810: 30

                  k^3 = 27 

                    k^3 = 3^3

                     k=3

    thay k=3,x=2k,y=3k,z=5k ta có:

suy ra{x=2.3,y= 3.3,z =5.3

x=6,y=9, z =15

vậy........

23 tháng 3 2018

saiucchegianroibucminhhum

5 tháng 8 2018

câu b nhé

nhắn tin vs mình r mình chỉ cho nhé

16 tháng 7 2018

\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)

\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)

Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)

Áp dụng t/c DTSBN ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)

Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)

các câu còn lại lm tương tự nhé

16 tháng 7 2018

uhm, tks bn

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

9 tháng 10 2018

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{45}{9}=5\)

\(\Rightarrow\hept{\begin{cases}x-1=10\\y-2=15\\z-3=20\end{cases}\Rightarrow}\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)

9 tháng 10 2018

thằng này ở trường nào