\(\frac{3x}{8}\)\(=\frac{3y}{64}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)

= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5

Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11

\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17

\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23

Vậy x = 11 ; y = 17 ; z = 23

 

21 tháng 11 2016

a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)

\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)

Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

\(\Rightarrow x^2=1;y^2=4;z^2=9\)

=> x = 1 hoặc -1

y = 2 hoặc -2

z = 3 hoặc -3

28 tháng 2 2020

Ta có: \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)

\(\Leftrightarrow x=\frac{y}{8}=\frac{z}{27}\)

\(\Rightarrow\hept{\begin{cases}y=8x\\z=27x\end{cases}}\)Thay vào ta được:

\(2x^2+2\left(8x\right)^2-\left(27x\right)^2=1\)

\(\Leftrightarrow-559x^2=1\)

\(\Leftrightarrow x^2=\frac{-1}{559}\)

\(\Leftrightarrow\)Vô nghiệm.

29 tháng 2 2020

Phạm Nguyệt Minh Băng làm sai từ dòng 4 trên xuống

                       Bài giải

\(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)

\(\Rightarrow\text{ }x=\frac{y}{8}=\frac{z}{27}\)\(\Rightarrow\hept{\begin{cases}y=8x\\z=27x\end{cases}}\)

Thay vào đẳng thức ta có :

\(2x^2+2\left(8x\right)^2+\left(27x\right)^2=1\)

\(2x^2+128x^2+729x^2=1\)

\(x^2\left(2+128+729\right)=1\)

\(859x^2=1\)

\(x^2=\frac{1}{859}\)

\(\Rightarrow\text{ }x\in\varnothing\)

26 tháng 6 2018

Giải chi tiết hộ mình nha♥ Cám ơn các bạn !

26 tháng 6 2018

Em làm như sau nhé ;)

Ta có: \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{64}=\frac{z}{216}\Rightarrow\frac{x^2}{\left(8\right)^2}=\frac{y^2}{\left(64\right)^2}=\frac{z^2}{\left(216\right)^2}\)

\(\Rightarrow\frac{2x^2}{2.8^2}=\frac{2y^2}{2.64^2}=\frac{z^2}{216^2}\)

\(\Leftrightarrow\frac{2x^2+2y^2-z^2}{2.8^2+2.64^2-216^2}=\frac{1}{-38336}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{1}{-38336}\Rightarrow x=-4792\\\frac{y}{64}=\frac{-1}{-38336}\Rightarrow y=-599\\\frac{z}{216}=\frac{-1}{38336}\Rightarrow z=-\frac{4792}{27}\end{cases}}\)

\(\Rightarrow\left(x;y\right)\in\left\{-4792;-599;-\frac{4792}{27}\right\}\)

27 tháng 10 2015

áp dụng dãy tỉ số bằng nhau

 

7 tháng 8 2019

NHỚ tick cho mik nhá!

Hỏi đáp Toán

a) \(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}=\frac{x-2y+z}{5-6+4}=\frac{6}{3}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{5}=2\\\frac{2y}{6}=2\\\frac{z}{4}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=5.2\\2y=6.2\\z=4.2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=6\\z=8\end{matrix}\right.\)

Vậy : \(\left(x,y,z\right)=\left(10,6,8\right)\)

b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}=\frac{x^2-2y^2+z^2}{4-18+16}=\frac{8}{2}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=16\\y^2=36\\z^2=64\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\pm4\\y=\pm6\\z=\pm8\end{matrix}\right.\)

Vậy : \(\left(x,y,z\right)\in\left\{\left(-4,-6,-8\right),\left(4,6,8\right)\right\}\)