\(\frac{x-1}{2}\)=\(\frac{y-2}{3}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Dãy tỉ số bằng nhau ạ!

Áp dụng tính chất của dayxc tỉ số bằng nhau ta có :

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-2}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{2x-2+3y-6-z+2}{4+9-4}=\frac{89}{9}.\)

Tù đó rồi 

=> z , y , z nha easy quá còn j nx

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-2}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{2x-2+3y-6-z+2}{4+9-4}=\frac{89}{9}.\)

Đến đây tự giải nốt phần sau easy rồi

Study well 

2 tháng 9 2019

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-2}{9}=\frac{z-2}{4}\)

+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x-2}{4}=\frac{3y-2}{9}=\frac{z-2}{4}=\frac{2x+3y-z}{4+9-4}=\frac{95}{9}\)

Suy ra \(\frac{2x-2}{4}=\frac{95}{9}\Rightarrow x=\frac{199}{9}\)

            \(\frac{3y-2}{9}=\frac{95}{9}\Rightarrow y=\frac{97}{3}\)

        \(\frac{z-2}{4}=\frac{95}{9}\Rightarrow z=\frac{398}{9}\)

Vậy \(x=\frac{199}{9};y=\frac{97}{3};z=\frac{398}{9}\)

Chúc bạn học tốt !!!

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

11 tháng 2 2019

a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)

     \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Theo đề: \(\left|x-2y\right|=5\)

\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )

    \(x-2y=-5\) (nếu \(x< 2y\) )

Vậy có hai trường hợp

TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)

TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)

b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)

    \(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)

Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)

\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)

11 tháng 2 2019

c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(\frac{2x+2y+2z}{x+y+z}\)

\(\frac{2\left(x+y+z\right)}{x+y+z}=2\)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x 

                                       => y + z + x + 1 = 3x

                                       => 1/2 + 1 = 3x

                                      => 3/2 = 3x

                                      => x = 3/2 : 3 = 1/2

=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y

                                        => x + z + y + 2 = 3y

                                        => 1/2 + 2 = 3y

                                       => 5/2 = 3y

                                       => y = 5/2 : 3 = 5/6

=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z

                                         => x + y + z - 3 = 3z

                                          => 1/2 - 3 = 3z

                                        => 3z = -5/2

                                         => z = -5/2 : 3 = -5/6

Vậy ...

2 tháng 7 2019

Ta có: \(\frac{x-1}{2}=\frac{2\left(x-1\right)}{2.2}=\frac{2x-2}{4}\)

            \(\frac{y-2}{3}=\frac{3\left(y-2\right)}{3.3}=\frac{3y-6}{9}\)

\(\Rightarrow\)\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}\)

\(=\frac{50-2-6+3}{9}=5\)

Ta có: \(\frac{2x-2}{4}=5\Rightarrow x=11\)

            \(\frac{3y-6}{9}=5\Rightarrow y=17\)

           \(\frac{z-3}{4}=5\Rightarrow z=23\)

2 tháng 7 2019

Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

  \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{50-5}{9}=\frac{45}{9}=5\)

=> \(\hept{\begin{cases}\frac{x-1}{2}=5\\\frac{y-2}{3}=5\\\frac{z-3}{4}=5\end{cases}}\) => \(\hept{\begin{cases}x-1=5.2=10\\y-2=5.3=15\\z-3=5.4=20\end{cases}}\) => \(\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)

Vậy ...

5 tháng 8 2018

câu b nhé

nhắn tin vs mình r mình chỉ cho nhé

31 tháng 7 2020

\(\frac{2}{3}x=\frac{3}{4}y=\frac{5}{6}z\)

=> \(\frac{2}{3}x.\frac{1}{30}=\frac{3}{4}y.\frac{1}{30}=\frac{5}{6}z.\frac{1}{30}\)

=> \(\frac{x}{45}=\frac{y}{40}=\frac{z}{36}\)

\(\Rightarrow\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}\)

Đến đây bạn tự làm tiếp

31 tháng 7 2020

\(\frac{2x}{3}=\frac{3y}{4}=\frac{5z}{6}< =>\frac{2x}{90}=\frac{3y}{120}=\frac{5z}{180}< =>\frac{x}{45}=\frac{y}{40}=\frac{z}{36}\)

\(< =>\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}\)

Theo tính chất của dãy tỉ số bằng nhau thì 

\(\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}=\frac{x^2+y^2+z^2}{2025+1600+1296}=\frac{724}{4921}\)

\(< =>\hept{\begin{cases}4921x^2=724.2025=1466100\\4921y^2=724.1600=1158400\\4921z=724.1296=938304\end{cases}}\)

\(< =>\hept{\begin{cases}x\approx\pm17\\y\approx\pm15\\z\approx\pm14\end{cases}}\)

29 tháng 6 2019

Đặt \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=t\)

\(\Rightarrow\frac{3}{2}t=x;\frac{4}{3}t=y;\frac{5}{4}t=z\)

lại có \(x+y+z=49\)

nên \(\frac{3}{2}t+\frac{4}{3}t+\frac{5}{4}t=49\)

\(\Rightarrow\frac{49}{12}t=49\)

do đó \(t=12\)

suy ra \(x=18;y=16;z=15\)

29 tháng 6 2019

Ta có : \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)<=> \(\frac{6.2x}{6.3}=\frac{4.3x}{4.4}=\frac{3.4z}{3.5}\)

                                                 <=> \(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)

Áp dụng tính chất dãy phân số bằng nhau ta có : 

\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{12\left(x+y+z\right)}{49}=\frac{12.49}{49}=12\)

Thay 12 vào từng biểu thức ta có :

\(\frac{12x}{18}=12\Rightarrow12x=12.18\Rightarrow x=\frac{12.18}{12}\Rightarrow x=18\)

\(\frac{12y}{16}=12\Rightarrow12y=12.16\Rightarrow y=\frac{12.16}{12}\Rightarrow y=16\)

\(\frac{12z}{15}=12\Rightarrow12z=12.15\Rightarrow z=\frac{12.15}{12}\Rightarrow z=15\)

Vậy \(\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\)