\(\frac{4}{x-1}\)=\(\frac{y-2}{3}\)=\(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-2}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{2x-2+3y-6-z+2}{4+9-4}=\frac{89}{9}.\)

Đến đây tự giải nốt phần sau easy rồi

Study well 

2 tháng 9 2019

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-2}{9}=\frac{z-2}{4}\)

+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x-2}{4}=\frac{3y-2}{9}=\frac{z-2}{4}=\frac{2x+3y-z}{4+9-4}=\frac{95}{9}\)

Suy ra \(\frac{2x-2}{4}=\frac{95}{9}\Rightarrow x=\frac{199}{9}\)

            \(\frac{3y-2}{9}=\frac{95}{9}\Rightarrow y=\frac{97}{3}\)

        \(\frac{z-2}{4}=\frac{95}{9}\Rightarrow z=\frac{398}{9}\)

Vậy \(x=\frac{199}{9};y=\frac{97}{3};z=\frac{398}{9}\)

Chúc bạn học tốt !!!

Dãy tỉ số bằng nhau ạ!

Áp dụng tính chất của dayxc tỉ số bằng nhau ta có :

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-2}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{2x-2+3y-6-z+2}{4+9-4}=\frac{89}{9}.\)

Tù đó rồi 

=> z , y , z nha easy quá còn j nx

25 tháng 8 2020

a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)

\(\Leftrightarrow\frac{13}{36}x=-\frac{8}{45}\)

\(\Rightarrow x=-\frac{32}{65}\)

b) \(\left(\frac{2}{3}x-\frac{1}{2}\right).\left(-\frac{2}{3}\right)+\frac{1}{5}=-\frac{3}{4}\)

\(\Leftrightarrow-\frac{4}{9}x+\frac{1}{3}+\frac{1}{5}=-\frac{3}{4}\)

\(\Leftrightarrow\frac{4}{9}x=\frac{77}{60}\)

\(\Rightarrow x=\frac{231}{80}\)

25 tháng 8 2020

a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)

=> \(\frac{4}{9}x-\frac{1}{3}x+\frac{2}{5}-\frac{2}{9}+\frac{1}{4}x=0\)

=> \(\left(\frac{4}{9}x-\frac{1}{3}x+\frac{1}{4}x\right)+\left(\frac{2}{5}-\frac{2}{9}\right)=0\)

=> \(\frac{13}{36}x+\frac{8}{45}=0\)

=> \(\frac{13}{36}x=-\frac{8}{45}\)

=> \(x=-\frac{32}{65}\)

b) \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}+\frac{1}{5}=\frac{-3}{4}\)

=> \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}=-\frac{19}{20}\)

=> \(\frac{2}{3}x-\frac{1}{2}=\left(-\frac{19}{20}\right):\left(-\frac{2}{3}\right)=\left(-\frac{19}{20}\right)\cdot\left(-\frac{3}{2}\right)=\frac{57}{40}\)

=> \(\frac{2}{3}x=\frac{57}{40}+\frac{1}{2}=\frac{77}{40}\)

=> \(x=\frac{77}{40}:\frac{2}{3}=\frac{77}{40}\cdot\frac{3}{2}=\frac{231}{80}\)

14 tháng 7 2019

\(a,\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}\)và x + y + z = 49

Ta có : \(\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{2}+\frac{5}{4}}=\frac{49}{\frac{19}{4}}=49\cdot\frac{4}{19}=\frac{196}{19}\)

Vậy : \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=\frac{196}{19}\\\frac{y}{\frac{4}{2}}=\frac{196}{19}\\\frac{z}{\frac{5}{4}}=\frac{169}{14}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{294}{19}\\y=\frac{392}{19}\\z=\frac{245}{19}\end{cases}}\)

14 tháng 7 2019

\(b,\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\)và 2x + 3y - z = 186

Ta có : \(\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\Leftrightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

\(\Leftrightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

Vậy : \(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}\)

31 tháng 7 2020

\(\frac{2}{3}x=\frac{3}{4}y=\frac{5}{6}z\)

=> \(\frac{2}{3}x.\frac{1}{30}=\frac{3}{4}y.\frac{1}{30}=\frac{5}{6}z.\frac{1}{30}\)

=> \(\frac{x}{45}=\frac{y}{40}=\frac{z}{36}\)

\(\Rightarrow\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}\)

Đến đây bạn tự làm tiếp

31 tháng 7 2020

\(\frac{2x}{3}=\frac{3y}{4}=\frac{5z}{6}< =>\frac{2x}{90}=\frac{3y}{120}=\frac{5z}{180}< =>\frac{x}{45}=\frac{y}{40}=\frac{z}{36}\)

\(< =>\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}\)

Theo tính chất của dãy tỉ số bằng nhau thì 

\(\frac{x^2}{2025}=\frac{y^2}{1600}=\frac{z^2}{1296}=\frac{x^2+y^2+z^2}{2025+1600+1296}=\frac{724}{4921}\)

\(< =>\hept{\begin{cases}4921x^2=724.2025=1466100\\4921y^2=724.1600=1158400\\4921z=724.1296=938304\end{cases}}\)

\(< =>\hept{\begin{cases}x\approx\pm17\\y\approx\pm15\\z\approx\pm14\end{cases}}\)

27 tháng 7 2019

cho x-3/2=y+1/3=z/4 và x+2y-z

Ta có :x-3/4=2y+2/6=z/4

=x-3+2y+2-z/2+6-4

=x+2y-z-3+2/4

=x+2y-z-1/4

=5-1/4

=4/4=1

=>x=1.2=2

     y=1.3=3

     z=1.4=4

Vậy x=2; y=3; z=4

đúng đấy k mk đi!!!!!!

2 tháng 7 2019

Ta có: \(\frac{x-1}{2}=\frac{2\left(x-1\right)}{2.2}=\frac{2x-2}{4}\)

            \(\frac{y-2}{3}=\frac{3\left(y-2\right)}{3.3}=\frac{3y-6}{9}\)

\(\Rightarrow\)\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}\)

\(=\frac{50-2-6+3}{9}=5\)

Ta có: \(\frac{2x-2}{4}=5\Rightarrow x=11\)

            \(\frac{3y-6}{9}=5\Rightarrow y=17\)

           \(\frac{z-3}{4}=5\Rightarrow z=23\)

2 tháng 7 2019

Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

  \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{50-5}{9}=\frac{45}{9}=5\)

=> \(\hept{\begin{cases}\frac{x-1}{2}=5\\\frac{y-2}{3}=5\\\frac{z-3}{4}=5\end{cases}}\) => \(\hept{\begin{cases}x-1=5.2=10\\y-2=5.3=15\\z-3=5.4=20\end{cases}}\) => \(\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)

Vậy ...

27 tháng 7 2019

#)Giải :

Áp dụng tính chất dảy tỉ số bằng nhau :

 \(\orbr{\begin{cases}\left|x-y+z\right|=4\\\left|x-y+z\right|=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{\left|x-y+z\right|}{2-3+5}=\frac{4}{4}=1\\\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{\left|x-y+z\right|}{2-3+5}=\frac{-4}{4}=-1\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}\frac{x}{2}=1\\\frac{x}{2}=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}\frac{y}{3}=1\\\frac{y}{3}=-1\end{cases}\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}\frac{z}{5}=1\\\frac{z}{5}=-1\end{cases}\Rightarrow\orbr{\begin{cases}z=5\\z=-5\end{cases}}}\)

Vậy ...

27 tháng 7 2019

|x-y+z| = 4 <=> x - y + z = 4 hoặc x - y + z = -4.

TH1: x - y + z = 4

x/2 = y/3 = z/5 = (x-y+z)/(2-3+5) = 4/4 = 1 (T/c dãy tỉ số bằng nhau)

=> x = 2; y = 3; z = 5.

TH2 :x - y + z = -4

=> x/2 = y/3 = z/5 = (x-y+z)/(2-3+5) = -4/4 = -1 (T/c dãy tỉ số bằng nhau)

=> x = -2; y = -3; z = -5.

Vậy...