Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{-2a\sqrt{a}+2a^2}{\left(\sqrt{a}-\right)\left(a-1\right)}\)
\(C=-x\sqrt{x}+x+\sqrt{x}-1\)
\(D=x-\sqrt{x}+1\)
\(\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\left(\frac{\sqrt{x}+1}{3\sqrt{x}}-\sqrt{x}-1\right)\right]:\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(=\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\left(\frac{\sqrt{x}+1-3x-3\sqrt{x}}{3\sqrt{x}}\right)\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\frac{-3x-2\sqrt{x}+1}{3\sqrt{x}}\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(-3\sqrt{x}+1\right)}{3\sqrt{x}}\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\left[\frac{2}{3\sqrt{x}}-\frac{-6\sqrt{x}+2}{3\sqrt{x}}\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}}{\sqrt{x}-1}\)
ĐK: \(x\ge-7\)
PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)
\(\Leftrightarrow x=9\)
P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((
A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)
Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)
C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)
Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0
Với \(x\ge0;x\ne1\)
\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{2}\left(\frac{1}{x-\sqrt{x}}-\frac{1}{x+\sqrt{x}}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{2}\left(\frac{x+\sqrt{x}-x+\sqrt{x}}{x^2-x}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{2}\left(\frac{2\sqrt{x}}{x\left(x-1\right)}\right)=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{2}.\frac{2}{\sqrt{x}\left(x-1\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}=\frac{x\left(\sqrt{x}+1\right)-x-\sqrt{x}}{\sqrt{x}\left(x-1\right)}\)
\(=\frac{x\sqrt{x}-\sqrt{x}}{\sqrt{x}\left(x-1\right)}=\frac{\sqrt{x}\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=1\)