\(\frac{\sqrt{2}+\sqrt{5-\sqrt{14}}}{\sqrt{12}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2018

=0,7320721383

13 tháng 12 2018

0,7320721383

13 tháng 12 2018

bn ơi là giải chi tiết(dũng não ko phải tay)   ^^

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

6 tháng 8 2020

Cách 1 :\(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)

\(=\sqrt{\sqrt{5}^2-2\sqrt{5}+\sqrt{1}^2}-\sqrt{\sqrt{5}^2+2\sqrt{5}+\sqrt{1}^2}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{1}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{1}\right)^2}\)

\(=|\sqrt{5}-\sqrt{1}|-|\sqrt{5}+\sqrt{1}|=\sqrt{5}-\sqrt{1}-\sqrt{5}-\sqrt{1}=-2\)

Cách 2 \(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)

\(< =>A^2=6-2\sqrt{5}-6-2\sqrt{5}+2\sqrt{36-20}\)

\(< =>A^2=8-2\sqrt{5}-2\sqrt{5}=8-2\left(2\sqrt{5}\right)=8-4\sqrt{5}\)

<=>...

6 tháng 8 2020

\(B=\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{2}+\sqrt{1}}{\sqrt{17+12\sqrt{2}}}\)

\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\sqrt{17+12\sqrt{2}}-\left(\sqrt{2}+1\right)\sqrt{17-12\sqrt{2}}}{\sqrt{17^2-\left(12\sqrt{2}\right)^2}}\)

tự làm tiếp đi , mình lười viết

a: \(\Leftrightarrow2\sqrt{3x}+12-4x+5\sqrt{3}=0\)

\(\Leftrightarrow-4x+2\sqrt{3}\cdot\sqrt{x}+12+5\sqrt{3}=0\)

Đặt \(\sqrt{x}=a\left(a>=0\right)\)

Phương trình trở thành \(-4a^2+2\sqrt{3}a+12+5\sqrt{3}=0\)

\(\Delta=\left(2\sqrt{3}\right)^2-4\cdot\left(-4\right)\cdot\left(12+5\sqrt{3}\right)\)

\(=12+16\left(12+5\sqrt{3}\right)\)

\(=12+192+80\sqrt{3}=204+80\sqrt{3}\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}a_1=\dfrac{-2\sqrt{3}-\sqrt{204+80\sqrt{3}}}{-8}=\dfrac{2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{8}\left(nhận\right)\\a_2=\dfrac{-2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{-8}\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow a=\dfrac{2\sqrt{3}+2\sqrt{26+20\sqrt{3}}}{8}=\dfrac{\sqrt{3}+\sqrt{26+20\sqrt{3}}}{4}\)

\(\Leftrightarrow x=a^2\simeq5,66\)

c: \(\Leftrightarrow x\sqrt{2}+5\sqrt{2}-4x-5-4\sqrt{2}=0\)

\(\Leftrightarrow x\left(\sqrt{2}-4\right)+\sqrt{2}-5=0\)

\(\Leftrightarrow x=\dfrac{5-\sqrt{2}}{\sqrt{2}-4}=\dfrac{-18-\sqrt{2}}{14}\)

d: \(\Leftrightarrow\dfrac{7x+1-4x-4002}{2001}=\dfrac{3x+2}{2003}-1\)

\(\Leftrightarrow3x-4001=0\)

hay x=4001/3

Bài 1: Rút gon biểu thức bằng cách đưa thưa số ra ngoài dấu căna) \(\sqrt{245.35}\)             c) \(\sqrt{63a^2}\) với a < 0              e)\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}\)           h) \(\sqrt{49.360}\)b) -\(\sqrt{500.162}\)      d) \(\frac{1}{3}\sqrt{225a^2}\)                      g) \(\sqrt{125a^2}\) với a < 0Bài 2: Đưa thừa số vào trong dấu căn a) 5\(\sqrt{2}\)      b) -2\(\sqrt{5}\)     ...
Đọc tiếp

Bài 1: Rút gon biểu thức bằng cách đưa thưa số ra ngoài dấu căn

a) \(\sqrt{245.35}\)             c) \(\sqrt{63a^2}\) với a < 0              e)\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}\)           h) \(\sqrt{49.360}\)

b) -\(\sqrt{500.162}\)      d) \(\frac{1}{3}\sqrt{225a^2}\)                      g) \(\sqrt{125a^2}\) với a < 0

Bài 2: Đưa thừa số vào trong dấu căn 

a) 5\(\sqrt{2}\)      b) -2\(\sqrt{5}\)      c) x.\(\sqrt{\frac{21}{xy}}\)với x ; y >0        d) x.\(\sqrt{\frac{-39}{x}}\)với x < 0

Bài 3: Sắp xếp theo thứ tự tăng dần 

a) \(5\sqrt{2};2\sqrt{5};2\sqrt{3};3\sqrt{2}\)                  b) \(4\sqrt{2};\sqrt{37};3\sqrt{7};2\sqrt{15}\)

 

c) \(\sqrt{27};6\sqrt{\frac{1}{3}};2\sqrt{28};5\sqrt{7}\)            c) \(3\sqrt{6};2\sqrt{7};\sqrt{39};5\sqrt{2}\)

 

Bài 4: So sánh 

a) \(\sqrt{15}-\sqrt{14}\)và \(\sqrt{14}-\sqrt{13}\)     b) \(\sqrt{105}-\sqrt{101}\) và \(\sqrt{101}-\sqrt{97}\)

Bài 5: Rút gọn

a) \(3\sqrt{2}+4\sqrt{8}-\sqrt{18}\)            c ) \(\sqrt{25a}+\sqrt{49a}-\sqrt{64a}\) với    \(a\ge0\)

b) \(\sqrt{3}-\frac{1}{3}\sqrt{27}+2\sqrt{507}\)        d) \(-\sqrt{36b}-\frac{1}{3}\sqrt{54b}+\frac{1}{5}\sqrt{150b}\) với \(b\ge0\)

 

 

 

 

 

 

 

 

 

0