Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{cos^2x\left(1+cot^2x\right)}{sin^2x\left(1+tan^2x\right)}=\frac{tan^2x\left(1+cot^2x\right)}{1+tan^2x}=\frac{tan^2x+tan^2x.cot^2x}{1+tan^2x}=\frac{1+tan^2x}{1+tan^2x}=1\)
Câu b ko rút gọn được, bạn coi lại đề
\(x^2sin^2a+y^2cos^2a-2xy.sina.cosa+x^2cos^2a+y^2sin^2a+2xy.sinx.cosa\)
\(=x^2\left(sin^2a+cos^2a\right)+y^2\left(cos^2a+sin^2a\right)=x^2+y^2\)
xem câu đầu ở đây nè https://olm.vn/hoi-dap/question/1248282.html
a/\(cot^2x.tan^2x+2sinx.cosx=1+2sinx.cosx=sin^2x+cos^2x+2sinx.cosx=\left(sinx+cosx\right)^2\)
b/ \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=1-2sin^2x.cos^2x\)
\(pt\Leftrightarrow\cos\frac{x}{4}\sin x+\cos x+\sin\frac{x}{4}\cos x=3\left(\sin^2x+\cos^2x\right)=3\)
Mà \(\sin\alpha;\text{ }\cos\alpha\le1\forall\alpha\)
\(\Rightarrow\cos\frac{x}{4}.\sin x\le1.1;\text{ }\sin\frac{x}{4}.\cos x\le1.1;\text{ }\cos x\le1\forall x\)
\(\Rightarrow\cos\frac{x}{4}.\sin x+\sin\frac{x}{4}.\cos x+\cos x\le3\text{ }\forall x\)
Dấu "=" xảy ra khi \(\cos x=1;\text{ }\cos\frac{x}{4}.\sin x=1;\text{ }\cos x.\sin\frac{x}{4}=1\)
\(\Leftrightarrow\cos x=1;\text{ }\sin\frac{x}{4}=1;\text{ }\cos\frac{x}{4}.\sin x=1\)
Pt trên vô nghiệm do \(\cos x=1\text{ thì }\sin x=0\Rightarrow\cos\frac{x}{4}.\sin x=0\)
Vậy phương trình đã cho vô nghiệm.
Đúng rồi nhé
TL :
Sai rồi nhé
Kết quả phải là 5
HT