K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

b phan d

19 tháng 10 2017

Theo tính chất của dãy tỉ só bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> a=b=c=d

=> M=1+1+1+1=4

18 tháng 2 2018

Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\left(ĐK:a+b+c+d\ne0\right)\)

Cộng 1 và mỗi đẳng thức. Ta có:

\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Vì các tử số của mỗi tỉ số bằng nhau suy ra các mẫu số của mỗi tỉ số bằng nhau

 + Suy ra: \(b+c+d=a+c+d=a+b+d=a+b+c\)

=> a = b = c = d

\(M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)

\(\Leftrightarrow M=1+1+1+1=4\)

18 tháng 2 2018

Xét a+b+c+d=0=>a+b=-(c+d) ;b+c=-(a+d); c+d=-(a+b);d+a=-(a+c)

=>M=a+b/c+d+b+c/a+d+c+d/a+b+d+a/b+c=-1+(-1)+(-1)+(-1)=-4(*)

Xét a+b+c+d khác 0=>a=b=c=d

=>M=a+b/c+d+b+c/a+d+c+d/a+b+d+a/b+c=1+1+1+1=4

10 tháng 8 2017

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{b+c+a}\)

\(\Leftrightarrow\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{b+c+a}{d}\)

\(\Leftrightarrow\frac{b+c+d}{a}+1=\frac{a+c+d}{b}+1=\frac{a+b+d}{c}+1=\frac{b+c+a}{d}+1\)

\(\Leftrightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

\(\Rightarrow a=b=c=d\)

Xét \(a+b+c+d=0\) ta có : 

\(a+b=-c-d;b+c=-a-d;c+d=-a-b;d+a=-b-c\)

\(\Rightarrow A=\frac{a+b}{-a-b}+\frac{b+c}{-b-c}+\frac{c+d}{-c-d}+\frac{d+a}{-b-c}=-1-1-1-1=-4\)

Xét \(a+b+c+d\ne0\) ta có : \(a=b=c=d\)

\(\Rightarrow M=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)

13 tháng 2 2020

Vào câu hỏi tương tự nhé bạn, tham khảo link này :

https://olm.vn/hoi-dap/detail/94049096720.html

13 tháng 2 2020

họ bảo ko có đường dẫn

20 tháng 11 2019

Với \(a+b+c+d=0\)

\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(d+a\right);c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)

Khi đó \(M=-1-1-1-1=-4\)

Với \(a+b+c+d\ne0\)

Áp dụng dãy tỉ số bằng nhau

\(\frac{2019a+b+c+d}{a}=\frac{a+2019b+c+d}{b}=\frac{a+b+2019c+d}{c}=\frac{a+b+c+2019d}{d}\)

\(=\frac{2022\left(a+b+c+d\right)}{a+b+c+d}=2022\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow M=4\)

9 tháng 12 2018

Xem lại đề biểu thức M đi bạn, hình như dấu + chứ không phải dấu = nha

20 tháng 9 2015

Từ \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

=> \(2+\frac{b+c+d}{a}=2+\frac{a+c+d}{b}=2+\frac{a+b+d}{c}=2+\frac{a+b+c}{d}\)

=> \(\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}=\frac{\left(b+c+d\right)+\left(a+c+d\right)+\left(a+b+d\right)+\left(a+b+c\right)}{a+b+c+d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

Từ \(3=\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{\left(a+b\right)+2\left(c+d\right)}{a+b}=1+2.\frac{c+d}{a+b}\)=> \(\frac{c+d}{a+b}=\frac{3-1}{2}=1\)

Từ \(3=\frac{a+b+d}{c}=\frac{a+b+c}{d}=\frac{2.\left(a+b\right)+\left(c+d\right)}{c+d}=1+2.\frac{a+b}{c+d}\) => \(\frac{a+b}{c+d}=1\)

Từ \(3=\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{\left(a+b+c\right)+\left(b+c+d\right)}{d+a}=2.\frac{b+c}{d+a}+1\)=> \(\frac{b+c}{d+a}=1\)

Từ \(3=\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{2\left(a+d\right)+\left(b+c\right)}{b+c}=2.\frac{d+a}{b+c}+1\)=> \(\frac{d+a}{b+c}=1\)

Vậy M = 1 + 1+ 1+ 1 = 4