K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2015

a =b =c 

=> a10 +a +a6 + 7a +a5 +5a^a  = 78 000

5a^a < 7800 => a = 1 ; a =2  ( 53^3 > 78000)

+a =1 => loại

+a =2 => 210 +2 +26 + 72 + 25 + 52^2 = 1024 +2 + 64 + 49 +32 + 625 = 1796 < 78000 loại

Vậy không có a;b;c nào thỏa mãn 

 

26 tháng 12 2015

\(\frac{a+b+c}{a}\)\(\frac{a+b+c}{b}\) = \(\frac{a+b+c}{c}\) = \(\frac{3a+3b+3c}{a+b+c}\)= 3 

............................................. ( còn lại đang nghĩ ) 

3 tháng 11 2018

Ta có: \(\frac{a+7}{a-7}=\frac{b+4}{b-4}\Rightarrow\left(a+7\right)\left(b-4\right)=\left(a-7\right)\left(b+4\right)\)

\(\Rightarrow ab-4a+7b-28=ab+4a-7b-28\)

\(\Rightarrow-4a-4a+7b+7b=0\Rightarrow-8a+14b=0\)

\(\Rightarrow8a=14b\Rightarrow4a=7b\Rightarrow\frac{a}{7}=\frac{b}{4}\Rightarrow\frac{a}{35}=\frac{b}{20}\left(1\right)\)

Lại có: \(\frac{b+5}{b-5}=\frac{c+6}{c-6}\Rightarrow\left(b+5\right)\left(c-6\right)=\left(b-5\right)\left(c+6\right)\)

\(\Rightarrow bc-6b+5c-30=bc+6b-5c-30\)

\(\Rightarrow6b+6b=5c+5c\) => 12b = 10c

=>\(6b=5c\Rightarrow\frac{b}{5}=\frac{c}{6}\Rightarrow\frac{b}{20}=\frac{c}{24}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow\frac{a}{35}=\frac{b}{20}=\frac{c}{24}=\frac{a+b+c}{35+20+24}=\frac{79}{79}=1\)

=>a=35,b=20,c=24

3 tháng 11 2018

cảm ơn bạn

20 tháng 7 2019

Ta có : \(\frac{a}{5}=\frac{b}{6}=>\frac{a}{20}=\frac{b}{24}\)(1)

\(\frac{b}{8}=\frac{c}{7}=>\frac{b}{24}=\frac{c}{21}\)(2)

Từ (1) và (2) => \(\frac{a}{20}=\frac{b}{24}=\frac{c}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a}{20}=\frac{b}{24}=\frac{c}{21}=\frac{a+b-c}{20+24-21}=\frac{69}{23}=3\)

Từ \(\frac{a}{20}=3=>a=60\)

Từ \(\frac{b}{24}=3=>b=72\)

Từ \(\frac{c}{21}=3=>c=63\)

Vậy a=60 , b=72 , c=63

20 tháng 7 2019

Ta có \(\frac{a}{5}=\frac{b}{6}=>\frac{a}{15}=\frac{b}{18}\)(1)

\(\frac{b}{8}=\frac{c}{7}=>\frac{b}{18}=\frac{c}{14}\)(2)

Từ (1) và (2) => \(\frac{a}{15}=\frac{b}{18}=\frac{c}{14}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{15}=\frac{b}{18}=\frac{c}{14}=\frac{a+b-c}{15+18-14}=\frac{69}{19}\)

=> \(\frac{a}{15}=\frac{69}{19}.15=54\frac{9}{19}\)

và \(\frac{b}{18}=\frac{69}{19}.18=65\frac{7}{19}\)

và \(\frac{c}{14}=\frac{69}{19}.14=50\frac{16}{19}\)

Vậy a = \(54\frac{9}{19}\); b = \(65\frac{7}{19}\); c = \(50\frac{16}{19}\)

22 tháng 8 2016

Ta có: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)

Mà a + b - c = 10

=> \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b-c}{3+5-7}=\frac{10}{1}=10\)

Vậy a = 10 x 3 = 30

b = 10 x 5 = 50

c = 10 x 7 = 70

CHÚC BẠN HỌC TỐT

22 tháng 8 2016

Áp dụng tính chất tỉ lệ thức ta có:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b-c}{3+5-7}=\frac{10}{1}=10\)

Khi đó: \(\frac{a}{3}=10\Rightarrow a=10\times3\Rightarrow a=30\)\(;\)\(\frac{b}{5}=10\Rightarrow b=10\times5\Rightarrow b=50\)\(;\)\(\frac{c}{7}=10\Rightarrow c=10\times7\Rightarrow c=70\)

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-z}{5+4-3}=\dfrac{18}{6}=3\)

Do đó: x=15; y=12; z=9

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{7}=\dfrac{a+2b+c}{5+2\cdot4+7}=\dfrac{10}{20}=\dfrac{1}{2}\)

Do đó: a=5/2; b=2; c=7/2

e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a+b}{4+5}=\dfrac{10}{9}\)

Do đó: a=40/9; b=50/9; c=20/9

f: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a+b-c}{2\cdot2+3-4}=\dfrac{-12}{3}=-4\)

Do đó: a=-8; b=-12; c=-16

25 tháng 8 2015

a/5 = b/6 => a/20 = b/24

b/8 = c/7 => b/24 = c/21

=> a/20 = b/24 = c/21

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

a/20 = b/24 = c/21 = a+b+c/20+24+21 = 69/65 (số hơi lẻ)

a/20 = 69/65 => a = 276/13

b/24 = 69/65 => b = 1656/65

c/21 = 69/65 => c = 1449/65