Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(\hept{\begin{cases}2a^2+bc\ne0\\2b^2+ac\ne0\\2c^2+ab\ne0\end{cases}}\)
Từ điều kiện => a + b + c >0
Quy đồng hai vế ta có:
bđt <=> \(-3a^2b^2c^2+a^4bc+b^4ac+c^4ab\ge0\)
<=> \(abc\left(a^3+b^3+c^3-3abc\right)\ge0\)
<=> \(abc\left[\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\right]\ge0\)
<=> \(abc\left[\frac{\left(a-b\right)^2}{2}+\frac{\left(b-c\right)^2}{2}+\frac{\left(a-c\right)^2}{2}\right]\ge0\)( vì a + b + c >0)
điều trên luôn đúng với mọi số thực a, b , c không âm
Vậy bất đẳng thức ban đầu đúng.
Dấu "=" xảy ra <=> a = 0 hoặc b = 0 hoặc c = 0 hoặc a = b = c.
Từ bất đẳng thức Cô si ta có:
\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)
\(\Rightarrow\)Ta cần chứng minh:
\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.
Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.
a.
\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(luôn đúng)
b. Áp dụng BĐT \(x^2+y^2\ge2xy\)
\(a^2+b^2\ge2ab,a^2+1\ge2a,b^2+1\ge2b\)\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\Leftrightarrow a^2+b^2+1\ge ab+a+b\)
c. Tương tự câu b
Áp dụng BĐT Cô si ta có
i. \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}},\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ca}}\)
\(\Rightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
k. Tương tự câu i
a/ BĐT sai, với \(c=0\Rightarrow\frac{a}{b}< \frac{a}{b}\) (vô lý)
b/ \(\Leftrightarrow\frac{a^2}{4}+b^2+c^2-ab+ac-2bc\ge0\)
\(\Leftrightarrow\left(\frac{a}{2}-b+c\right)^2\ge0\) (luôn đúng)
c/ Bạn coi lại đề, trong ngoặc bên phải là \(a^2b\) hay \(ab^2\)?
d/ \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}\ge0\)
\(\Leftrightarrow a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ca}+a\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)
e/ Thiếu điều kiện, BĐT này chỉ đúng khi \(a+b\ge0\) (hoặc a;b không âm)
a)\(B=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)
Áp dụng BĐT AM-GM ta có:
\(B=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)
\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{2ab}\cdot8ab}-\left(a+b\right)^2=7\)
Dấu "=" xảy ra khi \(\begin{cases}a=b\\a+b=1\end{cases}\)\(\Rightarrow a=b=\frac{1}{2}\)
Vậy \(Min_B=7\) khi \(a=b=\frac{1}{2}\)
b)\(C\ge\frac{1}{1-3ab\left(a+b\right)}+\frac{4}{ab\left(a+b\right)}\)
\(\ge\frac{16}{1-3ab\left(a+b\right)+3ab\left(a+b\right)}+\frac{1}{\frac{\left(a+b\right)^3}{4}}\ge16+4=20\)
Dấu "=" xảy ra khi \(\begin{cases}a=b\\a+b=1\end{cases}\)\(\Rightarrow a=b=\frac{1}{2}\)
Vậy \(Min_C=20\) khi \(a=b=\frac{1}{2}\)
Trước hết ta chứng minh BĐT Vasc sau:
Cho các số thực dương a;b;c thỏa mãn \(abc=1\) thì:
\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)
Thật vậy, do \(abc=1\) nên tồn tại \(x;y;z\) sao cho \(\left\{{}\begin{matrix}a=\frac{yz}{x^2}\\b=\frac{xz}{y^2}\\c=\frac{xy}{z^2}\end{matrix}\right.\)
BĐT trở thành: \(\sum\frac{1}{\frac{y^2z^2}{x^4}+\frac{yz}{x^2}+1}\ge1\Leftrightarrow\sum\frac{x^4}{y^2z^2+x^2yz+x^4}\ge1\)
\(\Leftrightarrow\frac{\left(x^2+y^2+z^2\right)^2}{\sum x^2y^2+\sum x^2yz+\sum x^4}\ge1\)
\(\Leftrightarrow x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\ge\sum x^2y^2+\sum x^2yz+\sum x^4\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2\ge x^2yz+y^2xz+z^2xy\)
BĐT trên luôn đúng (theo dạng quen thuộc \(a^2+b^2+c^2\ge ab+bc+ca\))
Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng cho bài toán:
\(VT=\sum\frac{a^2}{a^2+ab+b^2}=\sum\frac{1}{\left(\frac{b}{a}\right)^2+\frac{b}{a}+1}\)
Đặt \(\left\{{}\begin{matrix}\frac{b}{a}=x\\\frac{c}{b}=y\\\frac{a}{c}=z\end{matrix}\right.\) \(\Rightarrow xyz=1\)
\(\Rightarrow VT=\sum\frac{1}{x^2+x+1}\ge1\) theo Vasc
Dấu "=" xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c\)
đúng 1000% nha