\(\frac{a}{2020}\)= \(\frac{b}{2021}\)= ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2020

Sửa đề chứng minh : 4(a - b)(b - c) = (c - a)2

Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\Rightarrow\hept{\begin{cases}a=2020k\\b=2021k\\c=2022k\end{cases}}\)

Khi đó 4(a - b)(b - c) = 4(2020k - 202k)(2021k - 2022k) = 4(-k)(-k) = 4k2 (1)

Lại có (c- a)2 = (2022k - 2020k)2 = (2k)2 = 4k2 (2)

Từ (1)(2) => 4(a - b)(b - c) = (c - a)2 (đpcm)

12 tháng 12 2020

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\Rightarrow\hept{\begin{cases}a=2018k\\b=2019k\\c=2020k\end{cases}}\)

Khi đó 4(a - b)(b - c) = 4(2018k - 2019k)(2019k - 2020k)

= 4(-k).(-k) 

= 4k2 (1)

Lại có (c - a)2 = (2020k - 2018k)2 = (2k)2 = 4k2 (2)

Từ (1)(2) => 4(a - b)(b - c) = (c - a)2

21 tháng 6 2021

Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\Rightarrow\hept{\begin{cases}a=2020k\\b=2021k\\c=2022k\end{cases}}\)

Khi đó M = 4(a - b)(b - c) - (c - a)2 

= 4(2020k - 2021k)(2021k - 2022k) - (2022k - 2020k)2

= 4(-k)(-k) - (2k)2

= 4k2 - 4k2 = 0

Vậy M = 0

21 tháng 6 2021

Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\)\(k\ne0\))

\(\Rightarrow a=2020k\)\(b=2021k\)\(c=2022k\)

Thay a, b, c vào biểu thức M ta có:

\(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)

     \(=4\left(2020k-2021k\right)\left(2021k-2022k\right)-\left(2022k-2020k\right)^2\)

      \(=4.\left(-k\right).\left(-k\right)-\left(2k\right)^2=4k^2-4k^2=0\)

Vậy \(M=0\)

11 tháng 10 2017

Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

=> \(\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{a}{b}=\frac{c}{d}\) nếu khố hiểu thì bạn chứng mình kiểu này : 
Ta có : \(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) 

Mặt khác \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

Vậy \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

a)  \(\frac{a}{a+b}=\frac{c}{c+d}\)=> a . ( c + d )  = c . ( a + b )

=> ac + ad = ac + cb

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\)

9 tháng 10 2019

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)

\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}.\)

\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm1\right).\)

b) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\)

\(\Rightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}.\)

\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\left(đpcm2\right).\)

c) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\) (1)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{a-c}{b-d}=\frac{a+c}{b+d}\left(đpcm3\right).\)

Chúc bạn học tốt!

9 tháng 10 2019

a) đặt a/b=c/d =k

suy ra a=kb , c=kd

biến đổi vt ta đc :

a-b/b=kb-b/b=b(k-1)/b = k-1 (1)

biến đổi vp ta đc:

c-d/d=kd-d/d+d(k-1)/d = k-1 (2)

từ (1) và (2) suy ra a-b/b=c-d/d

30 tháng 9 2017

Bài 1

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\left(đpcm\right)\)

Vậy .....

Bài 2

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)

\(\Leftrightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(đpcm\right)\)

Vậy .....

Chúc bạn học tốt!