\(\frac{96}{x+y}\)+ \(\frac{96}{x-y}\)= 14

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

* ĐK: \(x\ne+-y\)

\(\frac{108}{y+x}+\frac{63}{y-x}=7_{\left(1\right)}\)

\(\frac{81}{y+x}+\frac{84}{y-x}=7_{\left(2\right)}\)

Trừ  theo vế với vế (1) cho (2) ta có: \(\frac{27}{y+x}-\frac{21}{y-x}=0\)<=> \(\frac{9}{y+x}=\frac{7}{y-x}\)<=> 9(y-x) = 7(y +x)

<=> y = 8x

Thay y = 8x vào PT (1) => \(\frac{108}{9x}+\frac{63}{7x}=7\)<=> \(\frac{12}{x}+\frac{9}{x}=7\) <=> 21/x = 7 => x = 3 => y =24

Vậy HPT cho có nghiệm (x; y) = (3; 24)

27 tháng 5 2016

\(\hept{\begin{cases}\frac{x^2+1}{y}+x+y=4\\\left(x+y\right)^2-2\left(\frac{x^2+1}{y}\right)=7\end{cases}}\)(ĐKXD : \(y\ne0\))

Đặt \(\frac{x^2+1}{y}=u\) ; \(x+y=t\)

Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}u+t=4\left(1\right)\\t^2-2u=7\left(2\right)\end{cases}}\)

Từ (1) suy ra : \(u=4-t\)thay vào (2) được phương trình : \(t^2-2\left(4-t\right)=7\Leftrightarrow t^2+2t-15=0\Leftrightarrow\left(t-3\right)\left(t+5\right)=0\)

\(\Rightarrow t=3\)hoặc \(t=-5\)

1. Với t = 3 => u = 1, ta có hệ: 

\(\hept{\begin{cases}\frac{x^2+1}{y}=1\\x+y=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}\)hoặc \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

2. Với t = -5 => u = 9 , ta có hệ : 

\(\hept{\begin{cases}\frac{x^2+1}{y}=9\\x+y=-5\end{cases}}\)\(\Rightarrow x,y\)vô nghiệm.

Vậy : Tập nghiệm của hệ phương trình là : \(\left(x;y\right)=\left(-2;5\right);\left(1;2\right)\)

27 tháng 5 2016

\(\hept{\begin{cases}\frac{x^2+1}{y}+x+y=4\\\left(x+y\right)^2-2\left(\frac{x^2+1}{y}\right)=7\end{cases}}\)(ĐKXD : \(y\ne0\))

20 tháng 9 2016

Ta có \(1\sqrt{x-2}\le\frac{1+x-2}{2}=\frac{x-1}{2}\)

\(1\sqrt{y+2009}\le\frac{1+y+2009}{2}=\frac{y+2010}{2}\)

\(1\sqrt{z-2010}\le\frac{1+z-2010}{2}=\frac{z-2009}{2}\)

Cộng vế theo vế ta được

\(1\sqrt{x-2}+\sqrt{y+2009}+\sqrt{z-2010}\)

\(\le\)\(\frac{x+y+z}{2}\)

Đấu = xảy ra khi x = 3; y = - 2008; z = 2011

1 tháng 7 2019

a)  ĐK: x, y, z khác 0

\(\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)=\frac{51}{4}\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2=\frac{867}{16}\end{cases}}\)

\(x+\frac{1}{x}=a;y+\frac{1}{y}=b;z+\frac{1}{z}=c\)

Ta có hệ >:

\(\hept{\begin{cases}a+b+c=\frac{867}{4}\\a^2+b^2+c^2=\frac{867}{16}\end{cases}}\)

Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{867}{16}\) với mọi a, b,c

"="   xảy ra khi và chỉ khi a=b=c

Hay \(x+\frac{1}{x}=y+\frac{1}{y}=z+\frac{1}{z}=\frac{17}{4}\)  giải ra tìm x, y, z

b) Hệ đối xứng:

\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)

Đặt x+y=S, xy=P

Ta có hệ :

\(\hept{\begin{cases}S+P=2+3\sqrt{2}\\S^2-2P=6\end{cases}}\)

=> \(\hept{\begin{cases}P=2+3\sqrt{2}-S\\S^2-2\left(2+3\sqrt{2}-S\right)=6\end{cases}}\)

Tự giải tìm S, P 

=> x,y

\(\hept{\begin{cases}\frac{7}{x-y+2}-\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{cases}}\)

Đặt \(a=\frac{1}{x-y+2};b=\frac{1}{x+y-1}\)ta được hệ phương trình:

\(\hept{\begin{cases}7a-5b=\frac{9}{2}\\3a+2b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=\frac{1}{2}\end{cases}}}\)

Với \(\hept{\begin{cases}a=1\\b=\frac{1}{2}\end{cases}}\), ta được:

\(\hept{\begin{cases}\frac{1}{x-y+2}=1\\\frac{1}{x+y-1}=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y+2=1\\x+y-1=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

Vậy hệ phương trình có 1 nghiệm là x = 1 và y = 2 

21 tháng 1 2020

\(a,\hept{\begin{cases}x^2-3y=2\\9y^2-8x=8\end{cases}}\)

\(x^2-3y=2\)

\(y=\frac{1^2-2}{3}\)

\(9-\left(\frac{x^2-2}{3}\right)^2-8x=8\)

\(\Rightarrow x^4-4x^2+4-8x-8=0\)

\(\Rightarrow x^4-4x^2-8x-4=0\)

\(\Rightarrow\left(x^2-2x-2\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\frac{2+2\sqrt{3}}{3}\\y=\frac{2-2\sqrt{3}}{3}\end{cases}}\)

Vậy ................................

3 tháng 10 2018

Giải nhanh dùm mình nka

5 tháng 8 2017

b2 \(\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}=\sqrt{x}.\sqrt{1-\frac{1}{x}}+\sqrt{y}.\)\(\sqrt{y}.\sqrt{1-\frac{1}{y}}+\sqrt{z}.\sqrt{1-\frac{1}{z}}\)rồi dung bunhia là xong

5 tháng 8 2017

A= \(\frac{1}{a^3}\)\(\frac{1}{b^3}\)\(\frac{1}{c^3}\)\(\frac{ab^2}{c^3}\)\(\frac{bc^2}{a^3}\)\(\frac{ca^2}{b^3}\)

Svacxo:
3 cái đầu >= \(\frac{9}{a^3+b^3+c^3}\)

3 cái sau >= \(\frac{\left(\sqrt{a}b+\sqrt{c}b+\sqrt{a}c\right)^2}{a^3+b^3+c^3}\)

Cô-si: cái tử bỏ bình phương >= 3\(\sqrt{abc}\)

=> cái tử >= 9abc= 9 vì abc=1 
Còn lại tự làm