Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\)
\(\Rightarrow7< \dfrac{x^2}{4}< 10\)
\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=6\)
b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\)
Từ (1) và (2), ta có:
\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)
Bạn có thể viết thay dòng "Từ (1) và (2)" thành "Từ các điều kiện trên" bạn nhé !(bạn ko cần phải sửa, đây chỉ là gợi ý)
\(a,\)\(x+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=-\frac{37}{45}\)
\(x+\left(\frac{9-5}{5.9}+\frac{13-9}{9.13}+\frac{17-13}{13.17}+...+\frac{45-41}{41.45}\right)=-\frac{37}{45}\)
\(x+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+....+\frac{1}{41}-\frac{1}{45}\right)-\frac{37}{45}\)
\(x+\left(\frac{1}{5}-\frac{1}{45}\right)=-\frac{37}{45}\)
\(x+\frac{8}{45}=-\frac{37}{45}\)
\(x=-\frac{37}{45}-\frac{8}{45}\)
\(x=-1\)
\(\left(\frac{2}{9}x-\frac{4}{9}\right).\left(\frac{1}{3}+\frac{-4}{7}:x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{9}x-\frac{4}{9}=0\\\frac{1}{3}+\frac{-4}{7}:x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{9}.x=\frac{4}{9}\\\frac{4}{7x}=\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{12}{7}\end{cases}}\)
\(\frac{4}{5}-\left|3-x\right|=\frac{1}{4}\)
\(\Rightarrow\left|3-x\right|=\frac{4}{5}-\frac{1}{4}\)
\(\Rightarrow\left|3-x\right|=\frac{11}{20}\)
\(\Rightarrow\hept{\begin{cases}3-x=\frac{11}{20}\\3-x=-\frac{11}{20}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{49}{20}\\x=\frac{71}{20}\end{cases}}\)
\(\frac{8}{9}:x^2+\frac{1}{9}=1\)
\(\Rightarrow\frac{8}{9}:x^2+\frac{1}{9}=\frac{9}{9}\)
\(\Rightarrow\frac{8}{9}:x^2=\frac{9}{9}-\frac{1}{9}\)
\(\Rightarrow\frac{8}{9}:x^2=\frac{8}{9}\)
\(\Rightarrow x^2=\frac{8}{9}:\frac{8}{9}\)
\(\Rightarrow x^2=1\)
\(\Rightarrow x^2=1^2\)
\(\Rightarrow x=1\)
Thêm:
\(\frac{4}{5}+\frac{3}{4}.x\frac{5}{2}\)
\(x-\frac{1}{2}=-\frac{5}{2}\)
\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự
\(\frac{9}{4}\left|x\right|-4=\frac{1}{4}\left|x\right|\Leftrightarrow2\left|x\right|=4\Leftrightarrow\left|x\right|=2\Leftrightarrow x\in\left\{\pm2\right\}\)