Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\frac{x^2-49}{x+5}:\left(x-7\right)\)
\(=\frac{\left(x-7\right)\left(x+7\right)}{x+5}.\frac{1}{\left(x-7\right)}\)
\(=\frac{x+7}{x+5}\)
\(b,\frac{2x+7}{x+2}-\frac{x+8}{2x+4}\)
\(=\frac{2\left(2x+7\right)}{2\left(x+2\right)}-\frac{x+8}{2\left(x+2\right)}=\frac{4x+14-x+8}{2\left(x+2\right)}\)
\(=\frac{3x+22}{2\left(x+2\right)}\)
a) \(\frac{x^2-49}{x+5}\div\left(x-7\right)=\frac{\left(x-7\right)\left(x+7\right)}{x+5}.\frac{1}{x-7}=\frac{x+7}{x+5}\)
b) \(\frac{2x+7}{x+2}-\frac{x+8}{2x+4}=\frac{2\left(2x+7\right)}{2\left(x+2\right)}-\frac{x+8}{2\left(x+2\right)}=\frac{\left(4x+14\right)-\left(x+8\right)}{2\left(x+2\right)}\)
\(=\frac{4x+14-x-8}{2\left(x+2\right)}=\frac{3x+6}{2\left(x+2\right)}=\frac{3\left(x+2\right)}{2\left(x+2\right)}=\frac{3}{2}\)
ĐKx\(\ne\)2,x\(\ne\)0
\(=\)\(\frac{2(x+2)+2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\):\(\frac{4x}{\left(x+2\right)^2}\)
=\(\frac{2x+4+2x-4}{\left(x-2\right)\left(x+2\right)}\)\(\frac{(x+2)^2}{4x}\)
=\(\frac{x+2}{x-2}\)
\(\left(\frac{2}{x-2}+\frac{2}{x+2}\right):\frac{4x}{x^2+4x+4}\)
\(=\left(\frac{2}{x-2}+\frac{2}{x+2}\right):\frac{4x}{\left(x+2\right)^2}\)
\(=\left(\frac{2}{x-2}+\frac{2}{x+2}\right).\frac{\left(x+2\right)^2}{4x}\)
\(=\frac{4x}{x^2-4}.\frac{\left(x+2\right)^2}{4x}\)
\(=\frac{4x.\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right).4}\)
\(=\frac{x+2}{x-2}\)
a) \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
<=> 1 - x + 3(x + 1) = 2x + 3
<=> 1 - x + 3x + 3 = 2x + 3
<=> 1 - x + 3x + 3 - 2x = 3
<=> 4 = 3 (vô lý)
=> pt vô nghiệm
b) ĐKXĐ: \(x\ne1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
<=> (x - 2)(2 - x) - 5(x + 1)(2 - x) = 15(x - 2)
<=> 2x - x2 - 4 + 2x - 5x - 5x2 + 10 = 15x - 30
<=> -x + 4x2 - 14 = 15x - 30
<=> x - 4x2 + 14 = 15x - 30
<=> x - 4x2 + 14 + 15x - 30 = 0
<=> 16x - 4x2 - 16 = 0
<=> 4(4x - x2 - 4) = 0
<=> -x2 + 4x - 4 = 0
<=> x2 - 4x + 4 = 0
<=> (x - 2)2 = 0
<=> x - 2 = 0
<=> x = 2 (ktm)
=> pt vô nghiệm
c) xem bài 4 ở đây: Câu hỏi của gjfkm
d) ĐKXĐ: \(x\ne1;x\ne2;x\ne3\)
\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
<=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}+\frac{x+1}{\left(x-1\right)\left(x-3\right)}=\frac{2x+5}{\left(x-1\right)\left(x-3\right)}\)
<=> (x + 4)(x - 3) + (x + 1)(x - 2) = (2x + 5)(x - 2)
<=> x2 - 3x + 4x - 12 + x2 - 2x + x - 2 = 2x2 - 4x + 5x - 10
<=> 2x2 - 14 = 2x2 + x - 10
<=> 2x2 - 14 - 2x2 = x - 10
<=> -14 = x - 10
<=> -14 + 10 = x
<=> -4 = x
<=> x = -4
\(C1:=3+1-3y\)
\(=4-3y\)
\(C2:\)
\(a.=3x\left(2y-1\right)\)
\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)
\(=\left(x-y+4\right)\left(x+y\right)\)
\(C3:\)
\(a.6x^2+2x+12x-6x^2=7\)
\(14x=7\)
\(x=\frac{1}{2}\)
\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)
\(\frac{26}{5}x=-\frac{13}{2}\)
\(x=-\frac{13}{2}\times\frac{5}{26}\)
\(x=-\frac{5}{4}\)
Bạn Moon làm kiểu gì vậy ?
1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)
\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)
\(=4-3y\)
2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)
b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+4\right)\)
3) a, \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)
\(< =>6x^2+2x+12x-6x^2=7\)
\(< =>14x=7< =>x=\frac{7}{14}\)
b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)
\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{26x}{5}=\frac{-13}{2}\)
\(< =>26x.2=\left(-13\right).5\)
\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)
Bài 6
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(=\left(a^2+2ab+b^2\right)-4ab\)
\(=\left(a+b\right)^2-4ab\)
Bài 5 :
\(a,16x^2-\left(4x-5\right)^2=15\)
\(16x^2-16x^2+40x-25-15=0\)
\(40x-40=0\)
\(40x=40\)
\(x=1\)
\(b,\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(4x^2+12x+9-4x^2+4=49\)
\(12x=36\)
\(x=3\)
\(c,\left(2x+1\right)\left(2x-1\right)+\left(1-2x\right)^2=18\)
\(4x^2-1+1-4x+4x^2=18\)
\(8x^2-4x-18=0\)
\(2\left(4x^2-2x-9\right)=0\)
\(x=\frac{1-\sqrt{37}}{4}\)
\(d,2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)
\(2x^2+4x+2-x^2+9-x^2+8x-16=0\)
\(12x=4\)
\(x=\frac{1}{3}\)
\(\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
\(=\frac{2x+4-2x+4}{x^2-4}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{8}{x^2-4}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{x+2}{x-2}\)
Ta có:
\(\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\right).\frac{x^2+4x+4}{8}\)
\(=\left(\frac{2x+4}{x^2-4}-\frac{2x-4}{x^2-4}\right).\frac{x^2+4x+4}{8}\)
\(=\frac{0}{x^2-4}.\frac{x^2+4x+4}{8}\)
\(=0.\frac{x^2+4x+4}{8}\)
\(=0\)
\(\frac{9-\left(x+5\right)^2}{x^2+4x+4}=\frac{?}{x+2}x2+4x+49−(x+5)2=x+2? \)