\(\frac{8^2+3.4^2+128}{2^5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2019

ta có \(A=\frac{2^6+3.2^4+2^7}{2^5}=\frac{2^4\left(2^2+3+2^3\right)}{2^5}=\frac{4+3+8}{2}=\frac{15}{2}\)

11 tháng 8 2019

Tính:

2) \(\left(\frac{2}{3}\right)^3-\left(\frac{3}{4}\right)^2.\left(-1\right)^5\)

\(=\frac{8}{27}-\frac{9}{16}.\left(-1\right)\)

\(=\frac{8}{27}-\left(-\frac{9}{16}\right)\)

\(=\frac{371}{432}.\)

Xin lỗi, anh chỉ làm câu này thôi em.

Chúc em học tốt!

4 tháng 9 2020

a)\(\frac{6^3+3\cdot6^2+3^3}{-13}=\frac{3^3\cdot2^3+3^3\cdot2^2+3^3}{-13}=\frac{3^3\left(2^3+2^2+1\right)}{-13}=-3^3=-27\)

b) \(\frac{2^3+3\cdot2^6-4^3}{2^3+3^2}=\frac{8+3\cdot64-64}{8+9}=\frac{8+192-64}{17}=\frac{136}{17}=8\)

c) \(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}=\frac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}=\frac{2^{11}\cdot3^{10}\left(2+2\cdot5\right)}{2^{11}\cdot3^{10}\cdot\left(2\cdot3^2-3\right)}=\frac{12}{18-3}=\frac{12}{15}\)

d) \(\frac{5^5\cdot20^3-5^4\cdot20^3+5^7\cdot4^5}{\left(20+5\right)^3\cdot4^5}=\frac{5^5\cdot20^3-5^4\cdot20^3+20^3\cdot20^2\cdot5^2}{5^6\cdot4^5}=\frac{20^3\left(5^5-5^4+5^4\cdot4^2\right)}{20^5\cdot5}\)\(=\frac{5^4\left(5-1+16\right)}{20^2\cdot5}=\frac{5^4\cdot20}{20^2\cdot5}=\frac{5^3}{20}=\frac{5^3}{5\cdot4}=\frac{25}{4}\)

                                Bài giải

a)\(\frac{6^3+3\cdot6^2+3^3}{-13}=\frac{3^3\cdot2^3+3^3\cdot2^2+3^3}{-13}=\frac{3^3\left(2^3+2^2+1\right)}{-13}=-3^3=-27\)

b) \(\frac{2^3+3\cdot2^6-4^3}{2^3+3^2}=\frac{8+3\cdot64-64}{8+9}=\frac{8+192-64}{17}=\frac{136}{17}=8\)

c) \(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}=\frac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}=\frac{2^{11}\cdot3^{10}\left(2+2\cdot5\right)}{2^{11}\cdot3^{10}\cdot\left(2\cdot3^2-3\right)}=\frac{12}{18-3}=\frac{12}{15}\)

d) \(\frac{5^5\cdot20^3-5^4\cdot20^3+5^7\cdot4^5}{\left(20+5\right)^3\cdot4^5}=\frac{5^5\cdot20^3-5^4\cdot20^3+20^3\cdot20^2\cdot5^2}{5^6\cdot4^5}=\frac{20^3\left(5^5-5^4+5^4\cdot4^2\right)}{20^5\cdot5}\)\(=\frac{5^4\left(5-1+16\right)}{20^2\cdot5}=\frac{5^4\cdot20}{20^2\cdot5}=\frac{5^3}{20}=\frac{5^3}{5\cdot4}=\frac{25}{4}\)

22 tháng 8 2020

b) D = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\)

= \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\)

= \(\frac{1}{2}-\frac{1}{2016}\)

22 tháng 8 2020

Bài c mk bí quá nên ko làm đc nhưng mong bn tick 2 bài dưới cho mk với nhé

CHÚC BẠN HỌC TỐT ^_^

22 tháng 1 2018

a, => 2^x = (2^3)^4/(2^4)^3 = 2^12/2^12 = 1 = 2^0

=> x = 0

c, => 4^x = 4^10.(4-3) = 4^10

=> x=10

d, => 2^2.3^x-1 + 2.3^x.9 = 2^2.3^6+2.3^9

=> 2.3^x-1 . (2+3.9) = 2.3^6.(2+3^3)

=> 2.3^x-1 . 27 = 2.3^6 . 27

=> 3^x-1 = 3^6

=> x-1 = 6

=> x = 7

e, => 2^x.(1/3+1/6+2) = 2^11.(2+1/2)

=> 2^x. 5/2 = 2^11. 5/2

=> 2^x = 2^11

=> x = 11

Tk mk nha

23 tháng 1 2018

câu b) chưa có ai làm thì mình làm nốt vậy 

\(\left(-2\right)^2=-4^6-8^5\)

\(\left(-2\right)^x=-4096-32768\)

\(\left(-2\right)^x=-36864\)

\(\Rightarrow x\) sẽ 1 số thập phân nào đó 

NV
24 tháng 6 2019

\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{60}\)

\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+...+\frac{1}{50}+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

2/ \(A=\frac{1}{2}+\frac{1}{12}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(A=\frac{7}{12}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}>\frac{7}{12}\)

Tương tự câu trên ta có: \(A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(A=\frac{1}{51}+...+\frac{1}{60}+\frac{1}{61}+...+\frac{1}{70}+\frac{1}{71}+...+\frac{1}{80}+\frac{1}{81}+...+\frac{1}{90}+\frac{1}{91}+...+\frac{1}{100}\)

\(A< \frac{1}{50}+...+\frac{1}{50}+\frac{1}{60}+...+\frac{1}{60}+\frac{1}{70}+...+\frac{1}{70}+\frac{1}{80}+...+\frac{1}{80}+\frac{1}{90}+...+\frac{1}{90}\)

\(A< 10.\frac{1}{50}+10.\frac{1}{60}+10.\frac{1}{70}+10.\frac{1}{80}+10.\frac{1}{90}\)

\(A< \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}< \frac{5}{6}\)

11 tháng 8 2016

\(\frac{3^{11}.8^2}{27^3.4^3}=\frac{3^{11}.\left(2^3\right)^2}{\left(3^3\right)^3.\left(2^2\right)^3}=\frac{3^{11}.2^6}{3^9.2^6}=3^2\)

11 tháng 8 2016

\(\frac{3^{11}.8^2}{27^3.4^3}=\frac{3^{11}.\left(2^3\right)^2}{\left(3^3\right)^3.\left(2^2\right)^2}=\frac{3^{11}.2^6}{3^9.2^6}=3^2\)