Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7\frac{x}{2.5}+7\frac{x}{5.8}+.....+7.\frac{x}{17.20}=\frac{21}{10}\)
\(7\left(\frac{x}{2.5}+\frac{x}{5.8}+...+\frac{x}{17.20}\right)=\frac{21}{10}\)
\(\frac{x}{2.5}+\frac{x}{5.8}+...+\frac{x}{17.20}=\frac{21}{70}\)
\(\frac{x.3}{2.5.3}+\frac{x.3}{5.8.3}+...+\frac{x.3}{17.20.3}=\frac{21}{70}\)
\(x.\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{17.20}\right)=\frac{21}{70}\)
\(x.\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{21}{70}\)
\(x.\frac{1}{3}.\frac{9}{20}=\frac{21}{70}\)
=> \(x=2\)
\(x=\frac{7x}{2}\)\(-\frac{7x}{5}+\)\(\frac{7x}{5}\)\(-\frac{7x}{8}\)\(+\frac{7x}{8}\)\(-\frac{7x}{11}\)\(+\frac{7x}{11}\)\(-\frac{7x}{14}\)\(+\frac{7x}{14}\)\(-\frac{7x}{17}+\)\(\frac{7x}{17}\)\(-\frac{7x}{20}\)\(=\frac{21}{10}\)
\(x=\frac{7x}{2}\)\(-\frac{7x}{20}\)\(=\frac{21}{10}\)
\(x=\frac{7x.10}{20}\)\(+\frac{7x}{20}\)\(=\frac{21}{10}\)
\(x=\frac{7x.10+7x}{20}\)\(=\frac{21}{10}\)
\(x=\frac{7x.\left(10+2\right)}{20.2}\)\(=\frac{7x.12}{40}\)\(=\frac{21}{10}\)
\(=>\frac{7x.12:4}{40:4}=\)\(\frac{21}{10}\)
\(=>x=1\)
\(\frac{1}{3}.\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right]\)
\(\frac{1}{3}\left[\frac{1}{2}-\frac{1}{20}\right]=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}\)
mk đầu tiên đó
A=...
<=>\(A=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{1}{17.20}\right)\)
<=>\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)
<=>\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)
<=>\(A=\frac{1}{6}-\frac{1}{60}< \frac{1}{6}< 1\)
Tớ biết làm đúng 100%:
\((x\cdot1+x\cdot\frac{7}{9})\left(x\cdot1+x\cdot\frac{7}{20}\right)...\left(x\cdot1+x\cdot\frac{7}{9200}\right)=\frac{186}{25}\)
\(x\cdot\left(1+\frac{7}{9}\right)\cdot x\left(1+\frac{7}{20}\right)\cdot...\cdot x\left(1+\frac{7}{9200}\right)=\frac{186}{25}\)
\(\left(x\cdot x\cdot...\cdot x\right)(\frac{16}{9}+\frac{27}{20}+...+\frac{9207}{9200})=\frac{186}{25}\)
\(\left(x\cdot x\cdot...\cdot x\right)\left(\frac{2\cdot8}{1\cdot9}+\frac{3\cdot9}{2\cdot10}+...+\frac{93\cdot99}{92\cdot100}\right)=\frac{186}{25}\)
\(x^{92}\cdot\frac{2\cdot8\cdot3\cdot9\cdot...\cdot93\cdot99}{1\cdot9\cdot2\cdot10\cdot...\cdot92\cdot100}=\frac{186}{25}\)
\(x^{92}\cdot\frac{\left(2\cdot3\cdot...\cdot93\right)\cdot\left(8\cdot9\cdot...\cdot99\right)}{\left(1\cdot2\cdot...\cdot92\right)\cdot\left(9\cdot10\cdot...\cdot100\right)}=\frac{186}{25}\)
\(x^{92}\cdot\frac{93\cdot8}{100}=\frac{186}{25}\)
\(x^{92}\cdot\frac{186}{25}=\frac{186}{25}\)
\(x^{92}=\frac{186}{25}:\frac{186}{25}\)
\(x^{92}=1\Rightarrow x=1\)
cô tớ giải rồi . x=1 (đúng 100%)
- A ở trên giữa các phân số là dấu " + " nha mấy bạn !
Đặt \(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(A=\frac{1}{2}-\frac{1}{17}\)
\(A=\frac{15}{34}\)
= \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)= \(\frac{1}{2}-\frac{1}{17}\)=\(\frac{15}{34}\)
\(\frac{3}{2.5}\)+\(\frac{3}{5.8}\)+\(\frac{3}{8.11}\)+\(\frac{3}{11.14}\)+\(\frac{3}{14.17}\)
=\(\frac{1}{2}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{8}\)+......+\(\frac{1}{14}\)-\(\frac{1}{17}\)
=\(\frac{1}{2}\)-\(\frac{1}{17}\)
=\(\frac{15}{34}\)
Ta có :
\(\frac{7x+2}{5x+7}=\frac{7x-1}{5x+1}\)
\(=>\left(7x+2\right)\left(5x+1\right)=\left(7x-1\right)\left(5x+7\right)\)
\(=>35x^2+7x+10x+2=35x^2+49x-5x-7\)
\(=>35x^2+17x+2=35x^2+44x-7\)
\(=>17x+2=44x-7\)
\(=>44x-17x=2+7\)
\(=>27x=9\)
\(=>x=\frac{9}{27}=\frac{1}{3}\)