Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{\sqrt{7-4\sqrt{3}}}{\sqrt{2-\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}\)
\(=\frac{\sqrt{4-2.2.\sqrt{3}+3}}{\sqrt{2-\sqrt{3}}}\cdot\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{4-2\sqrt{3}}}\cdot\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=\frac{2-\sqrt{3}}{\sqrt{3}-1}\cdot\left(1+\sqrt{3}\right)\)
\(=\frac{\left(2-\sqrt{3}\right)\left(1+\sqrt{3}\right)^2}{2}\)
b) \(\sqrt{\frac{3}{20}}+\sqrt{\frac{1}{60}}-2\sqrt{\frac{1}{50}}\)
\(=\sqrt{\frac{1}{10}\cdot\frac{3}{2}}+\sqrt{\frac{1}{10}\cdot\frac{1}{6}}-2\sqrt{\frac{1}{10}\cdot\frac{1}{5}}\)
\(=\sqrt{\frac{1}{10}}\cdot\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{6}}-2\sqrt{\frac{1}{5}}\right)\)
\(=\frac{1}{\sqrt{10}}\cdot\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{6}}{6}-\frac{2\sqrt{5}}{5}\right)\)
\(=\frac{1}{\sqrt{10}}\cdot\left(\frac{15\sqrt{6}+5\sqrt{6}-12\sqrt{5}}{6}\right)\)
\(=\frac{2.\left(5\sqrt{6}-3\sqrt{5}\right)}{3\sqrt{10}}\cdot\)
......
a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)
f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)
k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0
1)Từ gt đề bài,ta có : (x2 - yz).y.(1 - xz) = (y2 - xz).x.(1 - yz)
=> 0 = VT - VP = (x2y - x3yz - y2z + xy2z2) - (xy2 - xy3z - x2z + x2yz2) = xy(x - y) - xyz(x2 - y2) + z(x2 - y2) + xyz2(y - x)
= (x - y)[xy - xyz(x + y) + z(x + y) - xyz2] = (x - y)[xy + xz + yz - xyz(x + y + z)]
Vì\(x\ne y\Rightarrow x-y\ne0\)nên xy + xz + yz - xyz(x + y + z) = 0 => xy + xz + yz = xyz(x + y + z)
Vì\(xyz\ne0\)nên chia 2 vế cho xyz,ta có :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)= x + y + z (đpcm)
Bạn ko hiểu chỗ nào thì hỏi mình nhé!
Từ: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\)
\(\Leftrightarrow a+b+c+2\sqrt{ab}+2\sqrt{ac}+2\sqrt{bc}=4\)
\(\Leftrightarrow\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=1.\)vì a + b + c = 2
Từ đó: \(a+1=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right).\)
Tương tự: \(b+1=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\), \(c+1=\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right).\)
Từ đó: \(\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}=\frac{2}{\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)}.\)
Tương tự ta có: \(\frac{\sqrt{a}}{a+1}+\frac{\sqrt{b}}{b+1}+\frac{\sqrt{c}}{c+1}\)
\(=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}+\frac{\sqrt{c}}{\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)
\(=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(=\frac{2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}=\frac{2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}\).
Ta có: VP = VT nên có đpcm.
a,
\(\frac{5\sqrt{60}\cdot3\sqrt{15}}{15\sqrt{50}\cdot2\sqrt{18}}\\ =\frac{5\cdot\sqrt{2^2\cdot15}\cdot3\sqrt{15}}{15\sqrt{2\cdot5^2}\cdot2\sqrt{2\cdot3^2}}\\ =\frac{5\cdot2\cdot3\cdot15}{15\cdot5\cdot2\cdot3\cdot3}=\frac{1}{3}\)
b,
\(\frac{1}{3+\sqrt{2}}+\frac{1}{3-\sqrt{2}}\\ =\frac{3-\sqrt{2}+3+\sqrt{2}}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}\\ =\frac{6}{3^2-2}=\frac{6}{7}\)
c,
\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\\ =\frac{\left(\sqrt{5}-\sqrt{3}\right)^2+\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\\ =\frac{5-2\sqrt{15}+3+5+2\sqrt{15}+3}{5-3}\\ =\frac{16}{2}=8\)
d, Với \(x,y\ge0;x\ne y\), ta được:
\(\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\\ =\frac{\sqrt{x\cdot x^2}-\sqrt{y\cdot y^2}}{\sqrt{x}-\sqrt{y}}\\ =\frac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}\\ =\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}^3\right)}{\sqrt{x}-\sqrt{y}}\\ =\frac{\left(\sqrt{x}-\sqrt{y}\right)\left[\left(\sqrt{x}\right)^2+\sqrt{x\cdot y}+\left(\sqrt{y}\right)^2\right]}{\sqrt{x}-\sqrt{y}}\\ =x+y+\sqrt{xy}\)
Chúc bạn học tốt nha.
câu a đoạn \(\frac{5.2.3.15}{15.5.2.3.3}\) bạn làm cách nào vậy
Lời giải:
a)
\(\frac{2A}{\sqrt{2}}=\frac{4+2\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{4-2\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}=\frac{3+1+2\sqrt{3}}{2+\sqrt{3+1+2\sqrt{3}}}+\frac{3+1-2\sqrt{3}}{2-\sqrt{3+1-2\sqrt{3}}}\)
\(=\frac{(\sqrt{3}+1)^2}{2+\sqrt{(\sqrt{3}+1)^2}}+\frac{(\sqrt{3}-1)^2}{2-\sqrt{(\sqrt{3}-1)^2}}=\frac{(\sqrt{3}+1)^2}{2+\sqrt{3}+1}+\frac{(\sqrt{3}-1)^2}{2-(\sqrt{3}-1)}\)
\(=\frac{(\sqrt{3}+1)^2}{\sqrt{3}(\sqrt{3}+1)}+\frac{(\sqrt{3}-1)^2}{\sqrt{3}(\sqrt{3}-1)}=\frac{\sqrt{3}+1}{\sqrt{3}}+\frac{\sqrt{3}-1}{\sqrt{3}}=2\)
$\Rightarrow A=\sqrt{2}$
b)
\(B=\sqrt{10+2\sqrt{15}-2\sqrt{6}-2\sqrt{10}}=\sqrt{(8+2\sqrt{15})+2-2\sqrt{2}(\sqrt{3}+\sqrt{5})}\)
\(=\sqrt{(\sqrt{3}+\sqrt{5})^2+2-2\sqrt{2}(\sqrt{3}+\sqrt{5})}\)
\(=\sqrt{(\sqrt{3}+\sqrt{5}-\sqrt{2})^2}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)
c)
\(C=\frac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{x^2-4x+4}}=\frac{\sqrt{(x-1)-2\sqrt{x-1}+1}+\sqrt{(x-1)+2\sqrt{x-1}+1}}{\sqrt{(x-2)^2}}\)
\(=\frac{\sqrt{(\sqrt{x-1}-1)^2}+\sqrt{(\sqrt{x-1}+1)^2}}{|x-2|}=\frac{|\sqrt{x-1}-1|+|\sqrt{x-1}+1|}{|x-2|}\)