Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{4}{x+5}=\frac{3}{2x-1}\)
=> 4(2x - 1) = 3(x + 5)
=> 8x - 4 = 3x + 15
=> 8x - 3x = 15 + 4
=> 5x = 19
=> x = 19/5
b) \(\frac{x+11}{19}+\frac{x+12}{20}+\frac{x+13}{21}=3\)
=> \(\left(\frac{x+11}{19}-1\right)+\left(\frac{x+12}{20}-1\right)+\left(\frac{x+13}{21}-1\right)=0\)
=> \(\frac{x-8}{19}+\frac{x-8}{20}+\frac{x-8}{21}=0\)
=> \(\left(x-8\right)\left(\frac{1}{19}+\frac{1}{20}+\frac{1}{21}\right)=0\)
=> x - 8 = 0
=> x = 8
c) \(\left(2x-1\right)^2=\left(2x-1\right)^3\)
=> \(\left(2x-1\right)^2-\left(2x-1\right)^3=0\)
=> \(\left(2x-1\right)^2.\left[1-\left(2x-1\right)\right]=0\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\1-\left(2x-1\right)=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\1-2x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x=1\\2-2x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\2x=2\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)
a) 4/x + 3 = 3/2x - 1
<=> 4.(2x - 1) = (x + 3).3
<=> 8x - 4 = 3x + 9
<=> 8x = 3x + 9 + 4
<=> 8x = 3x + 13
<=> 8x - 3x = 13
<=> 5x = 13
<=> x = 13/5
=> x = 13/5
c) (2x - 1)2 = (2x - 1)3
<=> 4x2 - 4x + 1 = 8x3 - 12x2 + 6x - 1
<=> 8x3 - 12x2 + 6x - 1 = 4x2 - 4x + 1
<=> 8x3 - 12x2 + 6x - 1 - 1 = 4x2 - 4x
<=> 8x3 - 12x2 + 6x - 2x = 4x2 - 4x
<=> 8x3 - 12x2 + 6x - 2x - 4x = 4x2
<=> 8x3 - 12x2 + 10x - 2 = 4x2
<=> 8x3 - 12x2 + 10x - 2 - 4x2 = 0
<=> 8x2 - 16x2 + 10x - 2 = 0
<=> 2(x - 1)(2x - 1)2 = 0
<=> x - 1 = 0 hoặc 2x - 1 = 0
x = 0 + 1 2x = 0 + 1
x = 1 2x = 1
x = 1/2
=> x = 1 hoặc x = 1/2
a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)
\(\frac{1}{2}-x=\frac{57}{28}\)
\(x=-\frac{43}{28}\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow\left(2x-1\right)^2=5^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy ...
a) \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=\frac{-11}{4}\)
\(\Rightarrow\left(\frac{1}{2}-x\right)=\left(-\frac{5}{7}\right)+\frac{11}{4}\)
\(\Rightarrow\frac{1}{2}-x=\frac{57}{28}\)
\(\Rightarrow x=\frac{1}{2}-\frac{57}{28}\)
\(\Rightarrow x=-\frac{43}{28}\)
Vậy \(x=-\frac{43}{28}.\)
b) \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=20+5\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=5+1=6\\2x=\left(-5\right)+1=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6:2\\x=\left(-4\right):2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{3;-2\right\}.\)
d) \(\frac{x-6}{4}=\frac{4}{x-6}\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=4.4\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=16\)
\(\Rightarrow\left(x-6\right)^2=16\)
\(\Rightarrow x-6=\pm4\)
\(\Rightarrow\left[{}\begin{matrix}x-6=4\\x-6=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4+6\\x=\left(-4\right)+6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{10;2\right\}.\)
Chúc bạn học tốt!
\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)
Hệ số 3/5
\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)
Hệ số 4
Làm nốt b Quỳnh đag lm dở.
Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)
\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)
\(P\left(x\right)=x^2-2\)
Ta có : \(P\left(x\right)=x^2-2=0\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
\(\frac{21}{x}=\frac{7}{-4}\Leftrightarrow7x=21.\left(-4\right)\Leftrightarrow7x=-84\Leftrightarrow x=-84:7\Leftrightarrow x=-12\)
\(\frac{114}{2x}=-\frac{8}{12}\Leftrightarrow\frac{57}{x}=-\frac{2}{3}\Leftrightarrow-2x=57.3\Leftrightarrow2x=171\Leftrightarrow x=\frac{171}{2}\)
a)
\((3x-7)^5=0\Rightarrow 3x-7=0\Rightarrow x=\frac{7}{3}\)
b)
\(\frac{1}{4}-(2x-1)^2=0\)
\(\Leftrightarrow (2x-1)^2=\frac{1}{4}=(\frac{1}{2})^2=(-\frac{1}{2})^2\)
\(\Rightarrow \left[\begin{matrix} 2x-1=\frac{1}{2}\\ 2x-1=\frac{-1}{2}\end{matrix}\right.\Rightarrow \Rightarrow \left[\begin{matrix} x=\frac{3}{4}\\ x=\frac{1}{4}\end{matrix}\right.\)
c)
\(\frac{1}{16}-(5-x)^3=\frac{31}{64}\)
\(\Leftrightarrow (5-x)^3=\frac{1}{16}-\frac{31}{64}=\frac{-27}{64}=(\frac{-3}{4})^3\)
\(\Leftrightarrow 5-x=\frac{-3}{4}\)
\(\Leftrightarrow x=\frac{23}{4}\)
d)
\(2x=(3,8)^3:(-3,8)^2=(3,8)^3:(3,8)^2=3,8\)
\(\Rightarrow x=3,8:2=1,9\)
e)
\((\frac{27}{64})^9.x=(\frac{-3}{4})^{32}\)
\(\Leftrightarrow [(\frac{3}{4})^3]^9.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow (\frac{3}{4})^{27}.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow x=(\frac{3}{4})^{32}:(\frac{3}{4})^{27}=(\frac{3}{4})^5\)
f)
\(5^{(x+5)(x^2-4)}=1\)
\(\Leftrightarrow (x+5)(x^2-4)=0\)
\(\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2=4=2^2=(-2)^2\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=-5\\ x=\pm 2\end{matrix}\right.\)
g)
\((x-2,5)^2=\frac{4}{9}=(\frac{2}{3})^2=(\frac{-2}{3})^2\)
\(\Rightarrow \left[\begin{matrix} x-2,5=\frac{2}{3}\\ x-2,5=\frac{-2}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{19}{6}\\ x=\frac{11}{6}\end{matrix}\right.\)
h)
\((2x+\frac{1}{3})^3=\frac{8}{27}=(\frac{2}{3})^3\)
\(\Rightarrow 2x+\frac{1}{3}=\frac{2}{3}\Rightarrow x=\frac{1}{6}\)
Ta có:
\(\frac{4^{x+2}+4^{x+1}+4^x}{21}=\frac{4^x\cdot\left(4^2+4+1\right)}{21}=\frac{4^x\cdot21}{21}=4^x\)
\(\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{31}=\frac{9^x\cdot\left(1+3+3^2\right)}{31}=\frac{9^x\cdot13}{31}\)
Xét \(4^x=\frac{9^x\cdot13}{31}\)
=> \(\frac{4^x}{9^x}=\frac{13}{31}\)
Vì \(\hept{\begin{cases}\left(4;9\right)=1\\13\notin B\left(4\right)\\31\notin B\left(9\right)\end{cases}\Rightarrow x\in\varnothing}\)
Vậy x không tồn tại