Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\frac{6}{10.11}+\frac{6}{11.12}+\frac{6}{12.13}+...+\frac{6}{69.70}\)
\(A=\frac{6}{10}-\frac{6}{11}+\frac{6}{11}-\frac{6}{12}+\frac{6}{12}-\frac{6}{13}+...+\frac{6}{69}-\frac{6}{70}\)
\(A=\frac{6}{10}-\frac{6}{70}\)
\(A=\frac{18}{35}\)
b, \(B=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2018.2020}\)
\(B=\frac{4}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2018.2020}\right)\)
\(B=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)
\(B=2.\left(\frac{1}{2}-\frac{1}{2020}\right)\)
\(B=2.\frac{1009}{2020}\)
\(B=\frac{1009}{1010}\)
Chúc bạn học tốt
Hơi thắc mắc câu B cậu oi!!!Gỉai thích cho mk vs ạ!!Thanks
\(\frac{x-2}{2}-\frac{1+x}{3}=\frac{4-3x}{4}-1\)
\(\Leftrightarrow\frac{3\left(x-2\right)-2\left(1+x\right)}{6}=\frac{4-3x-4}{4}\)
\(\Leftrightarrow\frac{3x-6-2-2x}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow\frac{x-8}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow4x-32=-18x\)
\(\Rightarrow x=\frac{16}{11}\)
Ta có:
\(\frac{1}{20.21}+\frac{1}{21.22}+\frac{1}{22.23}+...+\frac{1}{60.61}\)
\(=\frac{1}{20}-\frac{1}{21}+\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+...+\frac{1}{60}-\frac{1}{61}\)
\(=\frac{1}{2}-\frac{1}{61}=\frac{59}{122}\)
b) \(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{45.49}\)
\(=\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{45.49}\)
\(=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{45}-\frac{1}{49}\)
\(=\frac{1}{5}-\frac{1}{49}=\frac{44}{245}\)
Bn Tấn sai rùi
phần a , câu cuối là \(\frac{1}{20}\)chứ đâu phải \(\frac{1}{2}\)
\(S=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+..+\frac{2005-2001}{2001.2005}\)
\(=\left(1-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{13}\right)+...+\left(\frac{1}{2001}-\frac{1}{2005}\right)\)
\(=1+\left(-\frac{1}{5}+\frac{1}{5}\right)+\left(-\frac{1}{9}+\frac{1}{9}\right)+...+\left(-\frac{1}{2001}+\frac{1}{2001}\right)-\frac{1}{2005}\)
\(=1-\frac{1}{2005}\)
\(=\frac{2004}{2005}\)
c, 1/3-1/4+1/4-1/5+........+1/50-1/51
= 1/3-1/51
= 16/51
d, (đề bài)
= 1/1.5+1/5.9 +.........+1/97.101
=1/1-1/5+1/5-1/9+.....+1/97-1/101
=1/1-1/101
= 100/101
d, \(\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{97.101}\)
\(=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
Đặt A là tên của biểu thức trên
2A = \(\frac{7.2}{5.9}+\frac{7.2}{9.11}+\frac{7.2}{11.13}+\frac{7.2}{13.15}+...+\frac{7.2}{2015.2017}\)
2A = \(7\left(\frac{2}{5.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{2015.2017}\right)\)
2A = \(7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
2A = \(7\left(\frac{1}{5}-\frac{1}{2017}\right)\)
2A = \(7\cdot\frac{2012}{10085}\)
2A = \(\frac{14084}{10085}\)
A = \(\frac{14084}{10085}:2\)
A = \(\frac{7042}{10085}\)
\(\frac{7}{5.9}+\frac{7}{9.11}+\frac{7}{11.13}+\frac{7}{11.13}+...+\frac{7}{2015.2017}\)
\(=\frac{7}{5.9}+\frac{7}{2}.\left(\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{2015.2017}\right)\)
\(=\frac{7}{45}+\frac{7}{2}.\left(\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
=1/5-1/205
=8/41
Nhớ chích đúng cho mình nha!
À , làm chi tiết hộ mk