\(\frac{4}{5.9}\)+\(\frac{4}{9.13}\)+...+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2019

a) \(x+\)\(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{-37}{45}\)

\(\Rightarrow x+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{-37}{45}\)

\(\Rightarrow x+\frac{1}{5}-\frac{1}{45}=\frac{-37}{45}\)

\(\Rightarrow x+\frac{1}{5}=-\frac{4}{5}\)

\(\Rightarrow x=\frac{-3}{5}\)

b) Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2003.2005}\)

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2003.2005}\)

\(\Rightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}\)

\(\Rightarrow2A=1-\frac{1}{2005}\)

\(\Rightarrow2A=\frac{2004}{2005}\)

\(\Rightarrow A=\frac{1002}{2005}\)

16 tháng 3 2019

Tính tổng:
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\) 

\(\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2003+2005}\right)\)  

\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{2003}-\frac{1}{2005}\right)\) 

\(\frac{1}{2}\left(1-\frac{1}{2005}\right)\)

\(\frac{1}{2}\cdot\frac{2004}{2005}\)  

\(\frac{1002}{2005}\) 

k nha

28 tháng 2 2018

\(a,x+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=--\frac{37}{45}.\)

\(x+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{37}{45}\)

\(x+\frac{1}{5}-\frac{1}{45}=\frac{37}{45}\)

\(x+\frac{1}{5}=\frac{37}{45}+\frac{1}{45}=\frac{38}{45}\)

\(x=\frac{38}{45}-\frac{1}{5}=\frac{29}{45}\)

\(b,\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2015}{2016}\)

\(\Rightarrow1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2015}{2016}\)

\(\Rightarrow1-\frac{1}{5x+6}=\frac{2015}{2016}\)

\(\Rightarrow\frac{1}{5x+6}=1-\frac{2015}{2016}=\frac{1}{2016}\)

\(\Rightarrow5x+6=2016\)

\(\Rightarrow5x=2010\Rightarrow x=402\)

\(c,\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{x\left(x+2\right)}=\frac{2017}{2018}\)

\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{2017}{2018}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{2017}{2018}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{2017}{2018}=\frac{1}{2018}\)

\(\Rightarrow x+2=2018\Rightarrow x=2016\)

học tốt ~~~

5 tháng 5 2018

.........................

= \(\frac{1}{2}\). ( \(\frac{2}{1.3}\) + \(\frac{2}{3.5}\) + \(\frac{2}{5.7}\) ... +  \(\frac{2}{x.\left(x+2\right)}\) )

\(\frac{1}{2}\) . ( 1 - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{5}\) +  \(\frac{1}{5}\) - \(\frac{1}{7}\) + ... + \(\frac{1}{x}\)-  \(\frac{1}{x+2}\) ) 

= ................ 

Bạn tự làm tiếp nhé ! Chúc bạn học tốt :)

5 tháng 5 2018

 Các bạn ơi! giải chi tiết ra cho mình luôn nha 

9 tháng 4 2019

1, Tính tổng:

\(C=\frac{5}{7}\cdot\frac{5}{11}+\frac{5}{7}\cdot\frac{2}{11}-\frac{5}{7}\cdot\frac{14}{11}\)

\(=\frac{5}{7}\cdot\left(\frac{5}{11}+\frac{2}{11}-\frac{14}{11}\right)=\frac{5}{7}\cdot\frac{-7}{11}=\frac{-5}{11}\)

2, Tìm x:

\(x+\frac{5}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}=\frac{-37}{45}\)

\(\Rightarrow x+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}=\frac{-37}{45}\)

\(\Rightarrow x+\frac{1}{5}-\frac{1}{45}=\frac{-37}{45}\Rightarrow x+\frac{9}{45}-\frac{1}{45}=\frac{-37}{45}\)

\(\Rightarrow x+\frac{8}{45}=\frac{-37}{45}\Rightarrow x=\frac{-37}{45}-\frac{8}{45}=\frac{-45}{45}=-1\)

- Các bài tìm x còn lại bạn cứ theo trình tự thực hiện phép tính mà làm nhé!

9 tháng 4 2019

\(C=\frac{5}{7}\cdot\frac{5}{11}+\frac{5}{7}\cdot\frac{2}{11}-\frac{5}{7}\cdot\frac{14}{11}\)

\(=\frac{5}{7}\cdot\left(\frac{5}{11}+\frac{2}{11}-\frac{14}{11}\right)\)

\(=\frac{5}{7}\cdot-\frac{7}{11}\)

\(=-\frac{5}{11}\)

6 tháng 3 2016

bài này mà cũng đăng dễ ẹc 

x + 4/5.9 + 4/9.13 + 4/13.17 + ... + 4/41.45 =-37/45 

x+( 1/5 - 1/9 +1/9 - 1/13  + 1/13 - 1/17 + ... + 1/41 - 1/45 )= -37/45 

x+ (1/5 - 1/45 )=-37/45 

x+8/45 = -37 / 45 

x=-37/45 -8/45

x=-45/45=-1 

12 tháng 8 2020

TA CÓ THỂ THẤY, VẾ TRÁI CÓ: 12 CẶP

=>   \(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

<=>  \(x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)       (****)

Ta xét:    \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)

=>   \(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}\)

=>   \(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\)

=>   \(2A=1-\frac{1}{25}=\frac{24}{25}\)

=>   \(A=\frac{12}{25}\)

Ta tiếp tục xét:      \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

=>   \(3B=1+\frac{1}{3}+...+\frac{1}{3^4}\)

=>   \(3B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\right)\)

=>   \(2B=1-\frac{1}{3^5}=\frac{242}{243}\)

=>   \(B=\frac{121}{243}\)

THAY CÁC GIÁ TRỊ A; B VÀO PT (****) TA ĐƯỢC: 

=>   \(x+\frac{12}{25}=\frac{121}{243}\)

<=>   \(x=\frac{121}{243}-\frac{12}{25}=\frac{109}{6075}\)

18 tháng 3 2018

Mk sẽ giải từng câu :) 

Bài 1 : 

Gọi \(ƯCLN\left(2n+2;6n+5\right)=d\)

\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(2n+2\right)⋮d\\2\left(6n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+12⋮d\\12n+10⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(12n+12\right)-\left(12n+10\right)⋮d\)

\(\Rightarrow\)\(2⋮d\)

\(\Rightarrow\)\(d\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Mà \(6n+5\) không chia hết cho \(2\) và \(-2\) nên \(ƯCLN\left(2n+2;6n+5\right)=\left\{1;-1\right\}\)

Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản với mọi n 

Chúc bạn học tốt ~ 

18 tháng 3 2018

1. Gọi d = ƯCLN (2n+2,6n+5)

=>\(\hept{\begin{cases}2n+2\\6n+5\end{cases}}\)chia hết cho d

=>\(\hept{\begin{cases}3.\left(2n+2\right)\\6n+5\end{cases}}\)chia hết cho d

=>\(\hept{\begin{cases}6n+6^{\left(1\right)}\\6n+5^{\left(2\right)}\end{cases}}\)chia hết cho d

Từ (1) và (2) => (6n+6) - (6n+5) chia hết cho d

                     => 6n + 6 - 6n - 5 chia hết cho d

                     => 1 chia hết cho d

                    => d =1

=>  ƯCLN (2n+2,6n+5) = 1

 Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản

2. Ta có:

B = 32. (\(\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+...+\frac{3}{67.70}\))

B = 32. (\(\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{67}-\frac{1}{70}\))

B = 32. (\(\frac{1}{10}-\frac{1}{70}\))

B = 27/35

\(\frac{27}{35}< 1\)

=> B < 1

3.      x + \(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{-37}{45}\)

         x + ( \(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{-37}{45}\)

         x + (\(\frac{1}{5}-\frac{1}{45}\)) = \(\frac{-37}{45}\)

         x + \(\frac{8}{45}=\frac{-37}{45}\)

                      x = \(\frac{-37}{45}-\frac{8}{45}\)

                      x = -1

9 tháng 4 2018

\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(100=2x+4\)

\(\Leftrightarrow\)\(2x=96\)

\(\Leftrightarrow\)\(48\)

Vậy \(x=48\)

Chúc bạn học tốt ~ 

9 tháng 4 2018

\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)

\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(49=x+1\)

\(\Leftrightarrow\)\(x=48\)

Vậy \(x=48\)

Chúc bạn học tốt ~