\(\frac{3a-b}{a+b}=\frac{3}{4}\)va 2a-3b =-39 

Tim a;b

 

 

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

Ta có :

\(\frac{a}{b}=\frac{3}{4}\)\(\Rightarrow\)\(a=3k;b=4k\)\(\left(k\in\right)ℤ\)

Suy ra :
\(\frac{2a-5b}{a-3b}=\frac{6k-20k}{3k-12k}=\frac{k\left(6-20\right)}{k\left(3-12\right)}=\frac{-14}{-9}=\frac{14}{9}\)

5 tháng 7 2016

***** Ta có       \(A=\frac{2a-5b}{a-3b}\)Mà \(\frac{a}{b}=\frac{6}{8}\Leftrightarrow b=\frac{8a}{6}=\frac{4}{3}a\)Thay b vào biểu thức A , ta có : \(\frac{2a-5.\frac{4}{3}a}{a-3.\frac{4}{3}a}=\frac{a\left(2-5.\frac{4}{3}\right)}{a\left(1-3.\frac{4}{3}\right)}=\frac{-14}{3}:\left(-3\right)=\frac{14}{9}\)Vậy \(A=\frac{14}{9}\)

***** Ta có \(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\)MÀ a-b=7 => a = b+7  . Thay a = b+7 vào biểu thức B , ta có \(\frac{3.\left(7+b\right)-b}{2\left(7+b\right)+7}+\frac{3b-\left(7+b\right)}{2b-7}=\frac{21+3b-b}{14+2b+7}+\frac{3b-7-b}{2b-7}\)=>>>>> \(\frac{21+2b}{21+2b}+\frac{2b-7}{2b-7}=1+1=2\)(k mình nha )

13 tháng 11 2019

Ta có

\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}\)

\(=2\)

Từ \(\frac{2b+c-a}{a}=2\Rightarrow2a=2b+c-a\Rightarrow3a-2b=c\)và \(3a-c=2b\)

Tương tự có \(3b-2c=a;3b-a=2c\) và \(3c-2a=b;3c-b=2a\)

Thay vào biểu thức M ta có

\(M=\frac{a\cdot b\cdot c}{2\cdot b\cdot2\cdot a\cdot2\cdot c}=\frac{1}{8}\)

13 tháng 11 2019

thank you bạn nha I love you 3000

23 tháng 10 2016

a) \(\frac{a}{4}=\frac{b}{6}\Rightarrow\frac{a}{20}=\frac{b}{30}\)

\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{c}{48}\)

=> \(\frac{a}{20}=\frac{b}{30}=\frac{c}{48}\)

Áp dubgj tc của dãy tỉ số bằng nahu at có:

\(\frac{a}{20}=\frac{b}{30}=\frac{c}{48}=\frac{5a-3b-3c}{20\cdot5-30\cdot3-48\cdot3}=\frac{-536}{-134}=4\)

=> \(\begin{cases}a=80\\b=120\\c=192\end{cases}\)

b)Có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)

=> \(\frac{a^2}{4}=\frac{b^2}{9}=\frac{c^2}{16}\)

Áp dụng tc của dãy tie số bằng nhau ta có:

\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{c^2}{16}=\frac{a^2+3b^2-2c^2}{4+3\cdot9-2\cdot16}=\frac{-16}{-1}=16\)

=> \(\begin{cases}a=8;s=-8\\b=12;b=-12\\c=16;x=-16\end{cases}\)

Vậy (x;y;z) thỏa mãn là \(\left(8;12;16\right);\left(-8;-12;-16\right)\)