K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

\(\frac{\sqrt{3}+\sqrt{7}}{\sqrt{3}-\sqrt{7}}+\frac{\sqrt{3}-\sqrt{7}}{\sqrt{3}+\sqrt{7}}\)

\(=\frac{\left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{3}+\sqrt{7}\right)+\left(\sqrt{3}-\sqrt{7}\right)\left(\sqrt{3}-\sqrt{7}\right)}{\left(\sqrt{3}-\sqrt{7}\right)\left(\sqrt{3}+\sqrt{7}\right)}\)

\(=\frac{\left(\sqrt{3}+\sqrt{7}\right)^2+\left(\sqrt{3}-\sqrt{7}\right)^2}{3-7}\)

\(=\frac{3+2\sqrt{3}.\sqrt{7}+7+3-2\sqrt{3}.\sqrt{7}+7}{-4}\)

\(=\frac{3+7+3+7}{-4}\)

\(=\frac{20}{-4}=-5\)

10 tháng 11 2019

Bài này đơn giản chỉ quy đồng về HDT thoi

15 tháng 11 2019

\(\frac{4}{\sqrt{7}-\sqrt{3}}+\frac{6}{3+\sqrt{3}}+\frac{\sqrt{7}-7}{\sqrt{7}-1}\)

\(=\frac{4\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}+\frac{6\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}+\frac{\sqrt{7}\left(1-\sqrt{7}\right)}{\sqrt{7}-1}\)

\(=\frac{4\left(\sqrt{7}+\sqrt{3}\right)}{7-3}+\frac{6\left(3-\sqrt{3}\right)}{9-3}-\sqrt{7}\)

\(=\sqrt{7}+\sqrt{3}+3-\sqrt{3}-\sqrt{7}\)

\(=3\)

18 tháng 11 2019

uyen

17 tháng 11 2019

Thế muốn giải thích thì liệt kê đau đầu =(

\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7+5}}=\frac{-10}{9}\inℚ\)

\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}=12\inℚ\)

Đây là TH là số hữu tỉ còn lại.....

\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}=8\sqrt{3}\notinℚ\)

\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}=2-\sqrt{7}\notinℚ\)

5 tháng 7 2017

a) \(\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(=\sqrt{4-4\sqrt{3}+3}-\sqrt{4+4\sqrt{3}+3}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left|2-\sqrt{3}\right|-\left|2+\sqrt{3}\right|\)

\(=2-\sqrt{3}-2-\sqrt{3}\)

\(=-2\sqrt{3}\)

15 tháng 11 2016

\(\frac{7\sqrt{b}}{b-9}-\left(\frac{\sqrt{b}}{\sqrt{b}-3}-\frac{\sqrt{b}-1}{\sqrt{b}+3}\right)\)

\(=\frac{7\sqrt{b}}{b-9}-\frac{\sqrt{b}\times\left(\sqrt{b}+3\right)}{\left(\sqrt{b}-3\right)\left(\sqrt{b}+3\right)}+\frac{\left(\sqrt{b}-1\right)\left(\sqrt{b}-3\right)}{\left(\sqrt{b}+3\right)\left(\sqrt{b}-3\right)}\)

\(=\frac{7\sqrt{b}}{b-9}-\frac{b+3\sqrt{b}}{b-9}+\frac{b-3\sqrt{b}-\sqrt{b}+3}{b-9}\)

\(=\frac{7\sqrt{b}-b-3\sqrt{b}+b-3\sqrt{b}-\sqrt{b}+3}{b-9}\)

\(=\frac{3}{b-9}\)