K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ : \(x\ne1\)

Ta có: \(\frac{2x^2-3x+1}{x-1}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}2x^2-3x+1\ge0\\x-1>0\end{cases}}\)hoặc \(\hept{\begin{cases}2x^2-3x+1\le0\\x-1< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)\left(x-1\right)\ge0\\x-1>0\end{cases}}\)hoặc \(\hept{\begin{cases}\left(2x-1\right)\left(x-1\right)\le0\\x-1< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-1>0\\2x-1\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\2x-1\le0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>1\\x\ge\frac{1}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x\le\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x>1\\x\le-\frac{1}{2}\end{cases}}\)

Vậy ...

1 tháng 4 2023

a)3x-2≥x+6

<=>3x-x≥6+2

<=>2x≥8

<=>x≥4

tập nghiệm của phương trình là 

\(S=\left\{xIx\ge4\right\}\)

biểu diễn tập nghiệm trên trục số

0 4

b)(3x-6)-(-2x-1)≥0

<=>3x-6++1≥0

<=>3x+2x≥6-1

<=>5x≥5

<=>x≥1

tập nghiệm của phương trình là 

\(S=\left\{xIx\ge1\right\}\)

0 1

a: =>2x>=8

=>x>=4

b: =>3x-6+2x+1>=0

=>5x-5>=0

=>x>=1

19 tháng 4 2018

a,TH1:\(\hept{\begin{cases}x+1\ge0\\x+7\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge-1\\x\ge-7\end{cases}}\)\(\Rightarrow x\ge-1\)

TH2:\(\hept{\begin{cases}x+1\le0\\x+7\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\le-1\\x\le-7\end{cases}}\)\(\Rightarrow x\le-7\)

Tập nghiệm của BPT là ...

b,TH1:\(\hept{\begin{cases}2x-1< 0\\3x+2>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x< 1\\3x>-2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x>-\frac{2}{3}\end{cases}}\)\(\Rightarrow-\frac{2}{3}< x< \frac{1}{2}\)

TH2:\(\hept{\begin{cases}2x-1>0\\3x+2< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x>1\\3x< -2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -\frac{2}{3}\end{cases}}\)(loại)

Tập nghiệm của BPT....

19 tháng 4 2018

thêm bài a,

Vì \(x\ne-7\) nên \(x< -7\)

Tập nghiệm.....

\(a,3x-2\ge x+4\)   => \(2x\ge6\)=>\(x\ge3\)

2 tháng 6 2018

a) \(x^3+x^2+2x-16\ge0\)

\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)

Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)

Cho nên \(x-2\ge0\)

\(\Leftrightarrow x\ge2\)

27 tháng 5 2018

a,x^3-2x^2+3x^2-6x+8x-16>=0

(x^2+3x+8)(x-2)>=0

x^2+3x+8>0

=> để lớn hơn hoac bang 0 thì x-2 phải>=0

=>x>=2

b,hình như là vô nghiệm ko chắc chắn lắm

21 tháng 4 2016

MTC:2x-1

Quy đồng và khử mẫu 2 vế ta có:

x+1 bé hơn hoặc bằng 0

x bé hơn hoặc bằng -1

Vậy:S{x/x bé hơn hoặc bằng -1}

21 tháng 4 2016

đk; 2x - 1 khác 0  => x khác 1/2

x+1 >= 0

x>= - 1

nghiem cua pt la ; x>= -1

NV
23 tháng 9 2019

a/ \(2x^2-3x+1>0\Rightarrow\left[{}\begin{matrix}x>1\\x< \frac{1}{2}\end{matrix}\right.\)

b/ \(-3x^2+2x+1< 0\Rightarrow-\frac{1}{3}< x< 1\)

c/ \(\frac{x+3}{x-2}\ge0\Rightarrow\left[{}\begin{matrix}x>2\\x\le-3\end{matrix}\right.\)

d/ \(\frac{2x+1}{x+2}\ge1\Leftrightarrow\frac{2x+1}{x+2}-1\ge0\Leftrightarrow\frac{x-1}{x+2}\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x< -2\end{matrix}\right.\)

e/ \(\frac{\sqrt{x}+3}{2-\sqrt{x}}\le0\Rightarrow\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}< 0\end{matrix}\right.\) \(\Rightarrow x>4\)

g/\(\frac{\sqrt{x}-3}{\sqrt{x}-2}\ge0\Rightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x\ge9\\x< 4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.\)

h/ \(\frac{\sqrt{x}-3}{\sqrt{x}-1}-\frac{1}{3}< 0\Rightarrow\frac{2\left(\sqrt{x}-4\right)}{3\left(\sqrt{x}-1\right)}< 0\Rightarrow1< x< 16\)