Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{6x^2+3}{24}-\frac{10x-4}{24}=\frac{6x^2-6}{24}-\frac{4x-12}{24}\)
\(\Leftrightarrow\frac{6x^2+3-10x+4}{24}=\frac{6x^2-6-4x+12}{24}\)
\(\Leftrightarrow6x^2-10x+7=6x^2-4x+6\)
\(\Leftrightarrow-6x+1=0\)
\(\Rightarrow-6x=-1\)
\(\Leftrightarrow x=\frac{1}{6}\)
Vậy ...
\(\Leftrightarrow\left(1-a^2\right)x+a=\frac{\left(x^2-b^2\right)}{x^2-b^2}\)
đkiện IxI khác IbI
\(A\Leftrightarrow\left(1-a^2\right)x=1-a\)
Nếu a=1 có vô số nghiệm x: với a khác 1
\(A\Leftrightarrow\left(1+a\right)x=-1\Rightarrow x=\frac{-1}{a+1}\)
Kết luận: 1) nếu a= 1 phương trình có vô số nghiệm x^2 khác b^2
2) nếu a khác 1 phương trình vô nghiệm khi b^2=[1/(a+1)]^2
có một nghiệm duy nhất x=-1/(a+1) khí b^2 khác [1/(a+1)]^2.
Đặt \(x^{2\:}-2x+2=t\)
Được phương trình: \(\frac{t}{t+1}+\frac{t-1}{t}=\frac{1}{6}\)
Quy đồng và khử mẫu được: \(12t^2-6=t^2+t\)
<=> \(11t^2-t=6\)
r á. đến đó thỳ hk lm đk n~. pn xem lại đề đy na @@
\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\left(x\ne1\right)\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4}{x^2+x+1}=0\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4x-4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{3x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Rightarrow3x=0\)
=> x=0 (tmđk)
Vậy x=0
ĐKXĐ
(x+1)(x+3)\(\ne\)0
<=>x+1\(\ne\)0 và x+3\(\ne\)0
<=>x\(\ne\)-1 và x\(\ne\)-3
Phương trình : \(\frac{x}{2\left(x+3\right)}+\frac{x}{2x+2}=\frac{4x}{\left(x+1\right)\left(x+3\right)}\)
<=>\(\frac{x}{2\left(x+3\right)}+\frac{x}{2\left(x+1\right)}=\frac{4x}{\left(x+1\right)\left(x+3\right)}\)
<=>\(\frac{x+1}{2\left(x+1\right)\left(x+3\right)}+\frac{x+3}{2\left(x+1\right)\left(x+3\right)}=\frac{8x}{2\left(x+1\right)\left(x+3\right)}\)
=>x+1+x+3=8x
<=>x+x-8x=-1-3
<=>-6x=-4
<=>x=2/3(thỏa ĐKXĐ)
Vậy S={2/3}
Bạn chú ý cách viết phương trình.
Phương trình chỉ có dạng f(x)=g(x) thôi, không có dạng A=f(x)=g(x) như bạn viết.
\(VT=\left[8\left(x+\frac{1}{x}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\right]+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=4\left(x+\frac{1}{x}\right)^2\left(2-x^2-\frac{1}{x^2}\right)+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=-4\left(x+\frac{1}{x}\right)^2\left(x-\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=-4\left(x^2-\frac{1}{x^2}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=-4x^4+8-\frac{4}{x^4}+4x^4+8+\frac{4}{x^4}\)
\(=16\)
Phương trình đã cho trở thành
\(\left(x+4\right)^2=16\\ \Leftrightarrow\orbr{\begin{cases}x+4=-4\\x+4=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=0\end{cases}}\)
quy đồng ,bỏ mẫu ,rút gọn =X2 +X=0
X=0 và X=-1
11111111111111111111111111111111111111111111111111111111111111111111111111111111
<=> \(\frac{\left(x+2\right)\cdot\left(x+2\right)}{x\cdot\left(x+2\right)}\)-\(\frac{x^2+5x+4}{x\left(x+2\right)}\)=\(\frac{x\left(x+2\right)}{\left(x+2\right)\cdot\left(x+2\right)}\)
=> x^2+4x+4-x^2-5x-4=x^2+2x
=> -x=x^2+2x
=> x^2+3x=0
=>x*(x+3)=0
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\left(x\ne-4;-5;-6;-7;-8\right)\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{x}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-13\left(tm\right)\end{cases}}}\)
vậy x=2; x=-13
Bài làm:
đkxđ: \(x\ne\left\{-4;-5;-6;-7\right\}\)
Ta có: \(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-13\end{cases}}\)
Vậy tập nghiệm của PT \(S=\left\{-13;2\right\}\)
\(\frac{2}{x^2-2x}+\frac{1}{x}=\frac{x+2}{x-2}\)
\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}+\frac{x\left(x+2\right)}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{2+x-2+x^2+2x}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x^2+3x}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x+3}{x-2}=0\)
\(\Rightarrow x+3=0\left(x-2\ne0\right)\)
\(\Leftrightarrow x=-3\)