Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\frac{2-2a}{6-8b}=\frac{3-3a}{9-12b}\)
\(\Leftrightarrow\left(6-8b\right)\left(3-3a\right)=\left(2-2a\right)\left(9-12b\right)\)
\(\Leftrightarrow18-18a-24b+24ab=18-24b-18a+24ab\) ( đúng )
=> Đpcm
b. Gọi d là ƯCLN của n + 3 và 2n + 5
n + 3 chia hết cho d
2n + 5 chia hết cho d
\(\Rightarrow\left(n+3\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow2\left(n+3\right)-2n-5⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\)=> d = 1
=> Đpcm
a) Giả sử \(\frac{2-2a}{6-8b}=\frac{3-3a}{9-12b}\)là đúng
Ta cần chứng minh \(\frac{2-2a}{6-8b}-\frac{3-3a}{9-12b}=0\)
\(\Rightarrow\frac{2\left(1-a\right)}{2\left(3-4b\right)}-\frac{3\left(1-a\right)}{3\left(3-4b\right)}=0\)
\(\Rightarrow\frac{1-a}{3-4b}-\frac{1-a}{3-4b}=0\)( đúng )
Vậy ta có đpcm
b) Gọi d là ƯCLN( n + 3 ; 2n + 5 )
\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+3;2n+5\right)=1\)
\(\Rightarrow\frac{n+3}{2n+5}\)là phân số tối giản ( đpcm )
a) \(\frac{x}{3}-\frac{1}{y}=\frac{1}{6}\)
Quy đồng \(\frac{x}{3}\)với \(\frac{1}{6}\). Ta có:
\(\frac{x}{3}=\frac{x.6}{3.6}=\frac{x6}{18}\)
\(\frac{1}{6}=\frac{1.3}{6.3}=\frac{3}{18}\)
\(\Rightarrow\frac{x}{3}-\frac{1}{y}=\frac{1}{6}\Leftrightarrow\frac{x6}{18}-\frac{1}{y}=\frac{3}{18}\)
Quy đồng \(\frac{1}{y}\)với \(\frac{3}{18}\). Ta có:
Đặt mẫu số chung: 18. Ta có:
\(\frac{1}{y}=\frac{18}{18}\) ( Vì khi quy đồng mẫu số của (1/y) phải là 18. Nên (1/y) = (1.18)/18 = (18/18) )
Vì y là mẫu. Suy ra y = 18
\(\Rightarrow\frac{x6}{18}-\frac{1}{y}=\frac{3}{18}\Leftrightarrow\frac{x6}{18}-\frac{18}{18}=\frac{3}{18}\)
\(\Leftrightarrow\frac{x6}{18}=\frac{18}{18}+\frac{3}{18}\Leftrightarrow\frac{x6}{18}=\frac{21}{18}\)
\(\Rightarrow x6=21\Rightarrow x=\frac{21}{6}=\frac{7}{2}\) ( và vì x là tử suy ra x = 7)
Vậy .....
b) Ta có: \(\left(3a+11b\right)⋮17\Leftrightarrow\left(5a+17b\right)⋮17\)
\(\Rightarrow\left(a+b\right)⋮17\)
Vì ( a + b) chia hết cho 17
\(\Rightarrow\left(..a+..b\right)⋮17\). Thế số vào chỗ ". . " Ta có:
\(\left(..a+..b\right)=\left(5a+17b\right)⋮17\left(ĐPCM\right)\)
\(\frac{1}{a+2}=\frac{2}{a+6}\)
\(\Rightarrow x+6=2\left(a+2\right)\)
\(\Rightarrow x+6=2x+4\)
\(\Rightarrow-x=-2\)
\(\Rightarrow x=2\)
a) \(\frac{1}{a+2}=\frac{2}{a+6}\)
=> a + 6 = 2(a + 2)
=> a + 6 = 2a + 4
=> a - 2a = 4 - 6
=> -a = -2
=> a = 2
c) \(\frac{3a-7}{a-1}=2\)
=> 3a - 7 = 2(a - 1)
=> 3a - 7 = 2a - 2
=> 3a - 2a = -2 + 7
=> a = 5
a. \(\frac{x}{9}< \frac{7}{x}\)=> \(x.x< 9.7\)
=> \(x^2< 63\)
\(\frac{7}{x}< \frac{x}{6}\)=> \(7.6< x.x\)
=> \(42< x^2\)
Vậy \(42< x^2< 63\)
=> \(x^2=49\)
=> \(x=7\)
b. \(\frac{3}{y}< \frac{y}{7}\)=> \(7.3< y.y\)
=> \(21< y^2\)
\(\frac{y}{7}< \frac{4}{y}\)=> \(y.y< 4.7\)
=> \(y^2< 28\)
Vậy \(21< y^2< 28\)
=> \(y^2=25\)
=> \(y=5\)
a) \(\frac{25}{1188}\)
b)\(\frac{4}{3}\)
c)\(\frac{17\times4}{-17}=\frac{4}{-1}=\frac{-4}{1}=-4\)