\(\frac{2}{5}\)x2y + xy2 - 3xy + \(\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

Làm lại nha

\(\dfrac{2}{5}x^2y+xy^2-3xy+\dfrac{1}{3}xy^2-3xy-\dfrac{1}{2}x^2y\)

\(=\left(\dfrac{2}{5}x^2y+\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{3}xy^2\right)+\left(-3xy^2-3xy^2\right)\)

\(=-\dfrac{1}{10}x^2y+\dfrac{4}{3}xy^2-6xy\)

13 tháng 3 2017

\(\dfrac{2}{5}x^2y+xy^2-3xy+\dfrac{1}{3}xy^2-3xy-\dfrac{1}{2}x^2y\)

\(=\left(\dfrac{2}{5}x^2y-\dfrac{1}{2}x^2y\right)+\left(xy^2+\dfrac{1}{3}xy^2\right)+\left(3xy-3xy\right)\)

\(=-\dfrac{1}{10}x^2y+\dfrac{4}{3}xy^2\)

7 tháng 5 2019

1, \(\left(xy\right)^2-\frac{1}{2}x^2y^2+3xy^2.\left(-\frac{1}{3}x\right)\)

\(=x^2y^2-\frac{1}{2}x^2y^2-x^2y^2\)

\(=-\frac{1}{2}x^2y^2\)

2, \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

\(=x^2+\frac{3}{2}x^2+\frac{1}{3}x^2\)

\(=\frac{17}{6}x^2\)

3, \(-4.\left(2x\right)^2y^3+\frac{1}{2}xy.\left(-2xy^2\right)+\frac{1}{4}x^2y^3\)

\(=-16x^2y^3-x^2y^3+\frac{1}{4}x^2y^3\)

\(=-\frac{67}{4}x^2y^3\)

4, \(\frac{1}{3}x^4y-\frac{5}{3}x^3.\left(\frac{5}{2}xy\right)+\frac{3}{4}x^4y\)

\(=\frac{1}{3}x^4y-\frac{25}{6}x^4y+\frac{3}{5}x^4y\)

\(=-\frac{97}{30}x^4y\)

5, \(\left(-2x^3y^4\right)^2-5x^2y.\left(\frac{3}{4}x^4y^7\right)-\frac{2}{3}x^6y^8\)

\(=4x^6y^8-\frac{15}{4}x^6y^8-\frac{2}{3}x^6y^8\)

\(=-\frac{5}{12}x^6y^8\)

14 tháng 8 2017

a) $(\dfrac{-1}{3}xy)(3x^2yz^2)$

$=\dfrac{-1}{3}.3.x^2.x.y.y.z^2$

$=-1x^3y^2z^2$

Hệ số của đơn thức : -1

b) $-54y^2.b.x=-54bxy^2$

Hệ số của đơn thức : -54b

c) $-2x^2y.(\dfrac{-1}{2})^2x(y^2z)^3$

$=-2x^2y.\dfrac{1}{4}xy^6z^3$

$=-2.\dfrac{1}{4}.x^2.x.y.y^6.z^3$

$=\dfrac{-1}{2}x^3y^7z^3$

Hệ số của đơn thức : $\dfrac{-1}{2}$

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

1.

\((\frac{1}{3}xy)^2.x^3+\frac{3}{2}(2x)^3(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)

\(=(\frac{1}{9}x^2y^2)x^3+\frac{3}{2}(8x^3)(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)

\(=\frac{1}{9}(x^2.x^3)y^2+(\frac{3}{2}.8.\frac{-7}{4})(x^3.x^2).y^2-\frac{2}{3}x^5y^2\)

\(=\frac{1}{9}x^5y^2-21x^5y^2-\frac{2}{3}x^5y^2=\frac{-194}{9}x^5y^2\)

2.

\(\frac{-2}{5}x^2y(-y^6)+\frac{3}{2}xy(\frac{-1}{15}xy^6)+(-2xy)^2y^5\)

\(=\frac{2}{5}x^2(y.y^6)+(\frac{3}{2}.\frac{-1}{15})(x.x).(y.y^6)+4x^2(y^2.y^5)\)

\(=\frac{2}{5}x^2y^7-\frac{1}{10}x^2y^7+4x^2y^7=\frac{43}{10}x^2y^7\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

3.

\(\frac{3}{7}xy^2z+\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2-\frac{3}{7}xy^2z\)

\(=(\frac{3}{7}xy^2z-\frac{3}{7}xy^2z)+(\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2)\)

\(=\frac{5}{6}x^3y^2\)

4.

\(\frac{2}{3}xy^2-\frac{5}{2}yz+\frac{1}{2}xy^2-\frac{2}{3}yz\)

\(=(\frac{2}{3}xy^2+\frac{1}{2}xy^2)-(\frac{5}{2}yz+\frac{2}{3}yz)\)

\(=\frac{7}{6}xy^2+\frac{19}{6}yz\)

5.

\(\frac{3}{2}xy^2z^5-\frac{5}{4}xyz^2+\frac{4}{3}xy^2z^5+\frac{1}{2}xyz^2\)

\(=(\frac{3}{2}xy^2z^5+\frac{4}{3}xy^2z^5)+(\frac{-5}{4}xyz^2+\frac{1}{2}xyz^2)\)

\(=\frac{17}{6}xy^2z^5-\frac{3}{4}xyz^2\)

17 tháng 4 2017

\(\left(\dfrac{1}{3}x^3y\right).\left(-xy\right)^2=\dfrac{1}{3}x^3y.\left(-x\right)^2y^2\)

\(=\dfrac{1}{3}x^5y^3\)

Tick mk nhéthanghoa

17 tháng 4 2017

Chắc là thu gọn đơn thức trên đúng ko bạn?Vậy mk giải nhé:

\(\left(\dfrac{1}{3}x^3y\right).\left(-xy\right)^2\)=\(\left(\dfrac{1}{3}x^3y\right).\left(x^2y^2\right)\)

=\(\dfrac{1}{3}\left(x^3x^2\right)\left(y.y^2\right)\)

=\(\dfrac{1}{3}x^5y^3\)

Mk tìm bậc luôn cho bạn nhé:

Bậc của đơn thức trên là 8.

Học tốt nha.hihi

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

1.

\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)

\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)

\(=2x^5y^4-4x^2y^3\)

2.

\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)

\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)

\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)

3.

\(5x-7xy^2+3x-\frac{1}{2}xy^2\)

\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)

\(=8x-\frac{15}{2}xy^2\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

4.

\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)

\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)

\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)

5.

\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)

\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)

\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)

6.

\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)

\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)

14 tháng 4 2019

Thay x = \(\frac{1}{2}\), y = \(\frac{-1}{3}\)vào biểu thức A

Ta được: \(A=3.\left(\frac{1}{2}\right)^3.\left(\frac{-1}{3}\right)+6.\left(\frac{1}{2}\right)^2.\left(-\frac{1}{3}\right)^2+3.\frac{1}{2}.\left(\frac{-1}{3}\right)^2\)

\(=\frac{3.1.\left(-1\right)}{8.3}+\frac{6.1.1}{4.9}+\frac{3.1.1}{2.9}\)

\(=\frac{-1}{8}+\frac{1}{6}+\frac{1}{6}=\frac{5}{24}\)

Thay x = -1, y = 3 vào biểu thức B

Ta được:

B = (-1)2. 32 + (-1) . 3 +(-1)3 +33

   = 9 + (-3) + (-1) + 27  

   = 32

14 tháng 4 2019

\(A=3x^2y+6x^2y^2+3xy^2\)

\(A=3\left(\frac{1}{2}\right)^3\left(-\frac{1}{3}\right)+6\left(\frac{1}{2}\right)^2\left(-\frac{1}{3}\right)^2+3\left(\frac{1}{2}\right)\left(-\frac{1}{3}\right)^2\)

\(A=\left(-\frac{1}{8}\right)+\frac{1}{6}+\frac{1}{6}\)

\(A=\frac{5}{24}\)

Vậy: Biểu thức A tại x = 1/2; y = -1/3 là: 5/24

\(B=x^2y^2+xy+x^3+y^3\)

\(B=\left(-1\right)^2.3^2+\left(-1\right).3+\left(-1\right)^3+3^3\)

\(B=9+\left(-3\right)+26\)

\(B=32\)

Vậy: biểu thức B tại x = -1; y = 3 là: 32

12 tháng 4 2024

Bài 1:

|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}

A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5

A(-1) = \(\dfrac{2}{9}\) + 1 + 5

A (-1) = \(\dfrac{56}{9}\)

A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5

A(1) = \(\dfrac{2}{9}\) - 1 + 5

A(1) = \(\dfrac{38}{9}\)

 

12 tháng 4 2024

|y| = 1 ⇒ y \(\in\) {-1; 1} 

⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))

B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)

B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))- 3.(-\(\dfrac{1}{3}\)).1 + 12

B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1

B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\) 

B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)

B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2

B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1

B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)