Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{24}{48}\)+ \(\frac{12}{48}\)+ \(\frac{8}{48}\)+ \(\frac{2}{48}\)+ \(\frac{1}{48}\)
A = \(\frac{24+12+8+2+1}{48}\)= \(\frac{47}{48}\)
ai tốt bụng thì tk cho mk nha
\(\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}=\frac{2}{5}\)
\(\frac{1}{2}:\frac{3}{4}:\frac{5}{6}=\frac{1}{2}\times\frac{4}{3}\times\frac{6}{5}=\frac{1\times2\times2}{5}=\frac{4}{5}\)
a)\(\frac{x}{17}=\frac{60}{204}=\frac{5}{17}\Rightarrow x=5\)
b)\(\frac{6+x}{33}=\frac{7}{11}\Rightarrow11\left(6+x\right)=7.33\Rightarrow11.6+11x=231\Rightarrow66+11x=231\)
\(\Rightarrow11x=231-66\Rightarrow11x=165\Rightarrow x=\frac{165}{11}=15\)
c)\(\frac{12+x}{43-x}=\frac{2}{3}\Rightarrow2\left(43-x\right)=3\left(12+x\right)\Rightarrow2.43-2x=3.12+3x\)
\(86-2x=36+3x\Rightarrow86-36=3x+2x\Rightarrow50=5x\Rightarrow x=\frac{50}{5}=10\)
\(\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+...+\frac{2}{192}.\)
\(=2\times\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{192}\right)\)
\(=2\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}+...+\frac{1}{96}-\frac{1}{192}\right)\)
\(=2\times\left(1-\frac{1}{192}\right)\)
\(=2\times\frac{191}{192}=\frac{191}{68}\)
\(\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+...+\frac{2}{192}\)
\(=\frac{1}{3.1}+\frac{1}{3.2}+\frac{1}{3.2^2}+...+\frac{1}{3.2^6}\)
\(=\frac{1}{3}.\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)
\(=\frac{1}{3}.A\)với \(A=\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\)
\(\Rightarrow2A=2.\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)
\(\Rightarrow2A=2+\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2^5}\)
\(\Rightarrow2A-A=\left(2+\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2^5}\right)-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)
\(\Rightarrow A=2-\frac{1}{2^6}=2-\frac{1}{64}=\frac{127}{64}\)
\(\Rightarrow\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+...+\frac{2}{192}=\frac{1}{3}.\frac{127}{64}=\frac{127}{192}\)
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
\(2A+A=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)\)
\(3A=1-\frac{1}{64}\)
\(3A=\frac{63}{64}\Rightarrow A=\frac{63}{64}\div3=\frac{21}{64}< \frac{1}{3}\)
\(\dfrac{3}{4}\times\dfrac{8}{5}:1\dfrac{1}{6}\)
=\(\dfrac{6}{5}:\) \(\dfrac{7}{6}\)
=\(\dfrac{6}{5}\times\dfrac{6}{7}=\dfrac{36}{35}\)
2\(\dfrac{1}{3}\) x 1\(\dfrac{1}{4}\) -\(\dfrac{7}{5}\)
\(\dfrac{7}{3}\times\dfrac{5}{4}-\) \(\dfrac{7}{5}\)
\(\dfrac{35}{12}-\dfrac{7}{5}\)
\(\dfrac{175}{60}-\dfrac{84}{60}=\dfrac{91}{60}\)
4\(\dfrac{2}{3}+1\dfrac{1}{4} +2\dfrac{1}{3}+2\dfrac{3}{7}\)
(4 +2) + \(\left(\dfrac{2}{3}+\dfrac{1}{3}\right)\) +1\(\dfrac{1}{4}\) + \(2\dfrac{3}{7}\)
6 + 1 + \(\dfrac{5}{4}\) + \(\dfrac{17}{7}\)
7 + \(\dfrac{103}{28}\)
\(\dfrac{299}{28}\)