Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{23^{10}-23^{11}}{23^{11}+21.23^{10}}=\frac{23^{10}\left(1-23\right)}{23^{10}\left(23+21\right)}=-\frac{22}{44}=-\frac{1}{2}\)
=\(\frac{-11}{23}\)\(\times\)\(\frac{10}{-13}\)\(+\)\(\frac{11}{-13}\)\(\times\)\(\frac{-3}{23}\)\(+\)\(\frac{12}{23}\)
=\(\frac{110}{299}\)\(+\)\(\frac{33}{299}\)\(+\)\(\frac{12}{23}\)
=\(\frac{143}{299}\)\(+\)\(\frac{12}{23}\)
= 1
\(A=\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{26}{7}-\frac{13}{11}+\frac{13}{23}}+\frac{\frac{3}{5}+\frac{3}{13}-0,9}{\frac{7}{91}+0,2-\frac{3}{10}}\)
\(A=\frac{5.31-\frac{5.2}{7}-\frac{5}{11}+\frac{5}{23}}{13.31-\frac{13.2}{7}-\frac{13}{11}+\frac{13}{23}}+\frac{\frac{3}{5}+\frac{3}{13}-\frac{9}{10}}{\frac{1}{13}+\frac{1}{5}-\frac{3}{10}}\)
\(A=\frac{5.31-\frac{5.2}{7}-\frac{5}{11}+\frac{5}{23}}{13.31-\frac{13.2}{7}-\frac{13}{11}+\frac{13}{23}}+\frac{\frac{3}{5}+\frac{3}{13}-\frac{9}{10}}{\frac{1}{5}+\frac{1}{13}-\frac{3}{10}}\)
\(A=\frac{5}{13}+\frac{1}{3}=\frac{44}{13}\)
Bạn tham khảo nhé
Ta có :
\(A=\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{26}{7}-\frac{13}{11}+\frac{13}{23}}+\frac{\frac{3}{5}+\frac{3}{13}-0,9}{\frac{7}{91}+0,2-\frac{3}{10}}\)
\(A=\frac{5.31-5.\frac{2}{7}-5.\frac{1}{11}+5.\frac{1}{23}}{13.31-13.\frac{2}{7}-13.\frac{1}{11}+13.\frac{1}{23}}+\frac{3.\frac{1}{5}+3.\frac{1}{13}-3.\frac{3}{10}}{\frac{1}{13}+\frac{1}{5}-\frac{3}{10}}\)
\(A=\frac{5\left(31-\frac{2}{7}-\frac{1}{11}+\frac{1}{23}\right)}{13\left(31-\frac{2}{7}-\frac{1}{11}+\frac{1}{23}\right)}+\frac{3\left(\frac{1}{5}+\frac{1}{13}-\frac{3}{10}\right)}{\frac{1}{5}+\frac{1}{13}-\frac{3}{10}}\)
\(A=\frac{5}{13}+\frac{3}{1}=\frac{5}{13}+\frac{39}{13}=\frac{44}{13}\)
Vậy \(A=\frac{44}{13}\)
\(\frac{-11}{23}.\frac{6}{7}+\frac{8}{7}.\frac{-11}{23}-\frac{1}{23}\)=\(\frac{-11}{23}.\left(\frac{6}{7}+\frac{8}{7}\right)-\frac{1}{23}\)=\(\frac{-11}{23}.2-\frac{1}{23}\)=\(\frac{-22}{23}-\frac{1}{23}=\frac{-21}{23}\)
b/\(\frac{10^9+1}{10^{9+1}+1}\)=\(\frac{10^9+1}{10.10^9+1}\)=\(\frac{1}{10\text{}}\)
\(\frac{10^{10}+1}{10^{10+1}+1}\)=\(\frac{10^{10}+1}{10+10^{10}+1}\)=\(\frac{1}{10}\)
Vì \(\frac{1}{10}\)=\(\frac{1}{10}\)=>bằng nhau
\(=\frac{23^{10}\left(1-23\right)}{23^{10}\left(23+21\right)}=\frac{-22}{44}=\frac{-1}{2}\)
\(\frac{23^{10}-23^{11}}{23^{11}+21.23^{10}}\)
\(=\frac{23^{10}.\left(1-23\right)}{23^{10}.\left(23+21\right)}\)
\(=\frac{-22}{44}=\frac{-22}{22.2}=\frac{-1}{2}\)