Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) trước hết ta cần chứng minh nếu x+y+z=0 thì x^3+y^3+z^3=3xyz
ta có x+y+z=0==> x=-(y+z)
<=> \(x^3=-\left(y^3+z^3+3yz\left(y+z\right)\right)\)
<=> \(x^3+y^3+z^3=-3yz\left(y+z\right)\)
<=> \(x^3+y^3+z^3=3xyz\)( cì y+z=-x)
áp dụng vào bài ta có \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
do đó M=\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc\cdot\frac{3}{abc}=3\)
Ta có:
\(\frac{2n+1}{\left[n\left(n+1\right)\right]^2}=\frac{n+n+1}{n^2\left(n+1\right)^2}=\frac{1}{n\left(n+1\right)^2}+\frac{1}{n^2\left(n+1\right)}\)
\(=\frac{1}{n\left(n+1\right)}.\left(\frac{1}{n}+\frac{1}{n+1}\right)=\left(\frac{1}{n}-\frac{1}{n+1}\right).\left(\frac{1}{n}+\frac{1}{n+1}\right)\)
\(=\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)
Áp dụng vào bài toán ta được
\(A=\frac{2.1+1}{\left[1\left(1+1\right)\right]^2}+\frac{2.2+1}{\left[2\left(2+1\right)\right]^2}+...+\frac{2.99+1}{\left[99\left(99+1\right)\right]^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{99^2}-\frac{1}{100^2}\)
\(=1-\frac{1}{100^2}=\frac{9999}{10000}\)
1/ Nhân cả tử và mẫu với liên hợp của mẫu và rút gọn ta được:
\(A=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{25}-\sqrt{24}\)
\(=\sqrt{25}-1=4\)
b/ \(\sqrt{1+\left(\frac{1}{n}+\frac{1}{n+2}\right)^2}=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+2\right)^2}+\frac{2}{n\left(n+2\right)}}\)
\(=\sqrt{\frac{\left(n^2+2n\right)^2+n^2+\left(n+2\right)^2+2n\left(n+2\right)}{n^2\left(n+2\right)^2}}=\sqrt{\frac{\left(n^2+2n\right)^2+4\left(n^2+2n\right)+4}{n^2\left(n+2\right)^2}}\)
\(=\sqrt{\frac{\left(n^2+2n+2\right)^2}{n^2\left(n+2\right)^2}}=\frac{n^2+2n+2}{n\left(n+2\right)}=1+\frac{2}{n\left(n+2\right)}=1+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow S=2014+1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2014}-\frac{1}{2016}\)
\(S=2014+1+\frac{1}{2}-\frac{1}{2015}-\frac{1}{2016}=...\)
\(3\left(2a^2+b^2\right)=\left(1^2+1^2+1^2\right)\left(a^2+a^2+b^2\right)\ge\left(a+a+b\right)^2=\left(2a+b\right)^2\)
\(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)
\(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)
\(gt\rightarrow7\left(x^2+y^2+z^2\right)=6\left(xy+yz+zx\right)+2015\)
\(\Leftrightarrow7\left(x+y+z\right)^2=20\left(xy+yz+zx\right)+2015\)
Ta có: \(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\)
\(\Rightarrow7\left(x+y+z\right)^2\le\frac{20}{3}\left(x+y+z\right)^2+2015\)
\(\Leftrightarrow\frac{1}{3}\left(x+y+z\right)^2\le2015\)
\(\Leftrightarrow x+y+z\le\sqrt{6045}\)
\(P\le\frac{1}{3}\left(x+y+z\right)\le\frac{\sqrt{6045}}{3}\)
Dấu bằng xảy ra khi \(x=y=z=\frac{\sqrt{6045}}{3}\)hay \(a=b=c=\left(\frac{\sqrt{6045}}{3}\right)^{-1}\)
Ta có:\(7\left(\frac{1}{a^2}+...\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2015\)
Mà \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le2015\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{6045}\)
\(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+...\)
Mà \(\left(2+1\right)\left(2a^2+b^2\right)\ge\left(2a+b\right)^2\)(bất dẳng thức buniacoxki)
=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
Lại có \(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\le\frac{\sqrt{6045}}{3}\)
Vậy \(MaxP=\frac{\sqrt{6045}}{3}\)khi \(a=b=c=\frac{\sqrt{6045}}{2015}\)