Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2016+2017.2018}{2017.2019-1}\)
= \(\frac{2016+2017.2018}{2017.2018+2017-1}\)
= \(\frac{2016+2017.2018}{2017.2018+2016}\)
= 1
Câu a
\(S=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+...+\frac{2019-2017}{2017x2019}.\)
\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}=1-\frac{1}{2019}=\frac{2018}{2019}\)
Câu b
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^6}+\frac{1}{3^7}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^5}+\frac{1}{3^6}\)
\(2A=3A-A=1-\frac{1}{3^7}\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^7}\)
\(2018\cdot2018-2017\cdot2019\)
\(=2018\cdot2018-2017\left(2018-1\right)\)
\(=2018\cdot2018-2017\cdot2018-2017\cdot1\)
\(=2018\left(2018-2017\right)-2017\cdot1\)
\(=2018\cdot1-2017\cdot1\)
\(=1\)
\(2018\cdot2018-2017\cdot2019\)
\(=(2019-2018)\cdot(2018-2017)\)
\(=1\)
Bài làm:
Ta có: \(\frac{x}{1.2}+\frac{x}{2.3}+\frac{x}{3.4}+...+\frac{x}{2017.2018}=-1\)
\(\Leftrightarrow x\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)=-1\)
\(\Leftrightarrow x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\right)=-1\)
\(\Leftrightarrow x\left(1-\frac{1}{2018}\right)=-1\)
\(\Leftrightarrow x.\frac{2017}{2018}=-1\)
\(\Rightarrow x=-\frac{2018}{2017}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(S=1-\frac{1}{2018}\)
\(S=\frac{2018}{2018}-\frac{1}{2018}\)
\(S=\frac{2017}{2018}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}.\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}=\frac{2017}{2018}\)
\(\frac{2016+2017.2018}{2017.2019-1}\)
\(=\frac{\left(2016+1\right)+2017.2018-1}{2017.2019-1}\)
\(=\frac{2017+2017.2018-1}{2017.2019-1}\)
\(=\frac{2017.\left(1+2018\right)-1}{2017.2019-1}\)
\(=\frac{2017.2019-1}{2017.2019-1}=1\)
\(\frac{2016+2017\times2018}{2017\times2019-1}\)
\(=\frac{2016+2017\times2018}{2017\times\left(2018+1\right)-1}\)
\(=\frac{2016+2017\times2018}{2017\times2018+2017-1}\)
\(=\frac{2016+2017\times2018}{2017\times2018+2016}\)
\(=1\)
__CHÚC BN HOK TỐT__