![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)
\(\Leftrightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x\left(\sqrt{x}+1\right)}=\frac{x}{\sqrt{x}-1}\)
b. ta có \(x=\frac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)
vậy \(P=\frac{4}{\sqrt{4}-1}=4\)
c.\(P=\frac{x}{\sqrt{x}-1}=\sqrt{x}-1+\frac{1}{\sqrt{x}-1}+2\ge2+2=4\)
vậy \(\sqrt{P}\ge2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK : \(4\ne x>0\)
1)\(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}}{\sqrt{x}-2}\)
2) \(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}=\sqrt{x}+\frac{3}{\sqrt{x}}\ge2.\sqrt{\frac{\sqrt{x}.3}{\sqrt{x}}}=2\sqrt{3}\)
Vậy : Min \(\frac{P}{Q}=2\sqrt{3}\Leftrightarrow x=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) P= √x+1 √x−1 + x+2 x√x−1 - √x+1 x+√x+1 \(\Leftrightarrow0\)
b)\(\sqrt{x}\left(2x+2\right)+2x+abp^2-2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}-\frac{5\sqrt{x}-2}{x-4}\)
\(Q=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(Q=\frac{x-3\sqrt{x}-2-5\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(Q=\frac{x-8\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\)
ủa sao không thấy gọn ta
chỉ có max thôi bạn nhé
Ta có : \(x-5\sqrt{x}+2=x-2.\frac{5}{2}\sqrt{x}+\frac{25}{4}-\frac{17}{4}\)
\(=\left(\sqrt{x}+\frac{5}{2}\right)^2-\frac{17}{4}\ge-\frac{17}{4}\)
\(\frac{1}{\left(\sqrt{x}+\frac{5}{2}\right)^2-\frac{17}{4}}\le\frac{1}{-\frac{17}{4}}=-\frac{4}{17}\)
Dấu ''='' không xảy ra vì \(\sqrt{x}+\frac{5}{2}\ne0\)