\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)+\(\frac{x+2}{x\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2020

a)  P= √x+1 √x−1 + x+2 x√x−1 - √x+1 x+√x+1 \(\Leftrightarrow0\)

b)\(\sqrt{x}\left(2x+2\right)+2x+abp^2-2\)

29 tháng 10 2020

Giải chi tiết giúp mình với ạ.

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

2 tháng 5 2021

a, Ta có : \(x=25\Rightarrow\sqrt{x}=\sqrt{25}=5\)

\(\Rightarrow Q=\frac{5-1}{5+1}=\frac{4}{6}=\frac{2}{3}\)

b, \(P=\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x\sqrt{x}+1}{x+\sqrt{x}}-\frac{4}{\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{4}{\sqrt{x}}\)

\(=\frac{x+\sqrt{x}+1+x-\sqrt{x}+1-4}{\sqrt{x}}=\frac{2x-2}{\sqrt{x}}\)

2 tháng 5 2021

c, Ta có : \(P.Q.\sqrt{x}< 8\)hay \(\frac{2x-2}{\sqrt{x}}.\sqrt{x}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)< 8\)

\(\Leftrightarrow\frac{2\left(x-1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< 8\Leftrightarrow2\left(\sqrt{x}-1\right)^2< 8\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2< 4\Leftrightarrow\sqrt{x}-1< 2\Leftrightarrow\sqrt{x}< 3\Leftrightarrow x< 9\)

DD
30 tháng 9 2021

Khi \(x=1,44\)\(A=\frac{1,44+7}{\sqrt{1,44}}=\frac{8,44}{1,2}=\frac{211}{30}\)

\(B=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-1}{\sqrt{x}-3}-\frac{2x-\sqrt{x}-3}{x-9}\)(ĐK: \(x\ge0,x\ne9\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2x-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x-3\sqrt{x}+2x+5\sqrt{x}-3-2x+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(S=\frac{1}{B}+A=\frac{\sqrt{x}-3}{\sqrt{x}}+\frac{x+7}{\sqrt{x}}=\frac{x+\sqrt{x}+4}{\sqrt{x}}=\sqrt{x}+\frac{4}{\sqrt{x}}+1\)

\(\ge2\sqrt{\sqrt{x}.\frac{4}{\sqrt{x}}}+1=5\)

Dấu \(=\)khi \(\sqrt{x}=\frac{4}{\sqrt{x}}\Leftrightarrow x=4\)(thỏa mãn) 

1 tháng 8 2020

a) Thay x=4 zô là đc . ra kết quả \(\frac{7}{6}\)là dúng

b) \(B=\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)

\(=\frac{3x+3\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)

\(=>P=A.B=\frac{3\sqrt{x}+1}{x+\sqrt{x}}.\frac{3\left(x+\sqrt{x}\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}=\frac{3}{3\sqrt{x}-1}\)

c) xét \(\frac{1}{P}=\frac{3\sqrt{x}-1}{3}\)

do \(\sqrt{x}\ge0=>3\sqrt{x}-1\ge-1\)\(=>\frac{3\sqrt{x}-1}{3}\ge-\frac{1}{3}\)

\(=>\frac{1}{P}\ge-\frac{1}{3}\)

dấu = xảy ra khi x=0

zậy ..

1 tháng 8 2020

came ơn bạn nha!!!

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

11 tháng 7 2017

ĐK  ; \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

a, \(Q=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}-1\right)-6\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x-8\sqrt{x}+7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-7\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-7}{\sqrt{x}+1}\)

b. \(Q< \frac{1}{2}\Rightarrow\frac{\sqrt{x}-7}{\sqrt{x}+1}-\frac{1}{2}< 0\Rightarrow\frac{\sqrt{x}-15}{2\left(\sqrt{x}+1\right)}< 0\Rightarrow\sqrt{x}-15< 0\)

\(\Rightarrow0\le x< 225\)và \(x\ne4\)

c. \(Q=\frac{\sqrt{x}-7}{\sqrt{x}+1}=1-\frac{8}{\sqrt{x}+1}\)

Ta thấy \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\frac{-8}{\sqrt{x}+1}\ge-8\Rightarrow1-\frac{8}{\sqrt{x}+1}\ge-7\)

\(\Rightarrow Q\ge-7\)

Vậy \(MinQ=-7\). Dấu bằng xảy ra \(\Rightarrow x=0\)

3 tháng 7 2018

bài này lp 8 cx làm dc , CTV mà ngu lonee :)

nhờ vào năng lực rinegan của chúa pain , ta  có thể dễ  dàng nhìn ra ......

\(1-x=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right).\)          dkxd , x dương và x khác 1

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x-2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}\left(1-\sqrt{x}\right)-\sqrt{x}+4}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right)\)

\(P=\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\left(\frac{\sqrt{x}-x-\sqrt{x}+4}{1-x}\right)\)

\(p=\frac{\left(\sqrt{x}-2\right)}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}{-\left(x-4\right)}\)

\(P=\frac{\left(\sqrt{x}-2\right)}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{1-\sqrt{x}}{-\sqrt{x}-2}\)

B)  dkxd có x luôn dương 

   vậy ta suy ra  \(-\left(\sqrt{x}+2\right)< 0\) " âm"

vậy để \(\frac{1-\sqrt{x}}{-\left(\sqrt{x}+2\right)}< 0\)

 thì \(1-\sqrt{x}>0\)  " vì số dương chia cho số âm luôn bé hơn 0 "

      \(-\sqrt{x}>-1\Leftrightarrow\sqrt{x}< 1\)

 để p dương thì  ................  0<x<1 

c)

\(\frac{1-\sqrt{x}}{-\sqrt{x}+2}=\frac{2-\sqrt{x}+1}{-\sqrt{x}+2}=1+\frac{1}{-\sqrt{x}+2}\)

vì x dương " dkxd " 

suy ra  \(\orbr{\begin{cases}\sqrt{x}+2\ge2\\-\sqrt{x}+2\le2\end{cases}}\)

vì " năm ở mẫu " 

\(\frac{1}{-\sqrt{x}+2}\ge\frac{1}{2}\)

\(1+\frac{1}{-\sqrt{x}+2}\ge1+\frac{1}{2}=\frac{3}{2}\)

dấu = xảy ra khi x = 0

3 tháng 7 2018

d!t , sửa lại câu C , thành 2-1 , ko phải 2 +1 :)